Как найти сумму внешних углов четырехугольника

Сумма углов четырехугольника
Содержание
  1. Свойства
  2. Сумма внешних углов
  3. 2 Comments
  4. Четырехугольник — виды и свойства с примерами решения
  5. Внутренние и внешние углы четырехугольника
  6. Сумма внутренних углов выпуклого четырёхугольника
  7. Сумма внешних углов выпуклого четырёхугольника
  8. Параллелограмм
  9. Параллелограмм и его свойства
  10. Признаки параллелограмма
  11. Прямоугольник
  12. Признак прямоугольника
  13. Ромб и квадрат
  14. Свойства ромба
  15. Трапеция
  16. Средняя линия треугольника
  17. Средняя линия трапеции
  18. Координаты середины отрезка
  19. Теорема Пифагора
  20. Справочный материал по четырёхугольнику
  21. Пример №1
  22. Признаки параллелограмма
  23. Пример №2 (признак параллелограмма).
  24. Прямоугольник
  25. Пример №3 (признак прямоугольника).
  26. Ромб. Квадрат
  27. Пример №4 (признак ромба)
  28. Теорема Фалеса. Средняя линия треугольника
  29. Пример №5
  30. Пример №6
  31. Трапеция
  32. Пример №7 (свойство равнобедренной трапеции).
  33. Центральные и вписанные углы
  34. Пример №8
  35. Вписанные и описанные четырёхугольники
  36. Пример №9
  37. Пример №10
  38. 🎦 Видео

Свойства

  1. Сумма углов четырехугольника равна 360°.
    ∠A + ∠B + ∠C + ∠D = 360°.
    Как найти сумму внешних углов четырехугольника
  2. Если четырехугольник правильный, то каждый угол по 90°
    и этот четырехугольник является квадратом.
    ∠A = ∠B = ∠C = ∠D, ⇒ ∠A = ∠B = ∠C = ∠D = 90°,
    ABCD — квадрат.
    Как найти сумму внешних углов четырехугольника
  3. Сумма противоположных углов четырехугольника равна 180°,
    если около четырехугольника описана окружность.
    ∠A + ∠С = ∠В + ∠D = 180°.
    Как найти сумму внешних углов четырехугольника

Такие четырехугольники называют вписанными.

Это все виды четырехугольников,
которые изучаются в школьном
курсе по геометрии.

Видео:№1082. Чему равна сумма внешних углов правильного n-угольника, если при каждой вершинеСкачать

№1082. Чему равна сумма внешних углов правильного n-угольника, если при каждой вершине

Сумма внешних углов

Что такое внешний угол многоугольника? Сколько внешних углов у многоугольника? Чему равна сумма внешних углов многоугольника?

Внешним углом многоугольника называется угол, смежный с его внутренним.углом.

Как найти сумму внешних углов четырехугольникаНапример, угол 1 — внешний угол при вершине A1 многоугольника

Как найти сумму внешних углов четырехугольника

так как он смежный с его внутренним углом A2A1An.

Как найти сумму внешних углов четырехугольника

Угол 2 также является смежным углу A2A1An.

А значит, ∠2 — внешний угол при вершине A1.

Как найти сумму внешних углов четырехугольника

Таким образом, при каждой вершине многоугольника есть два равных между собой внешних угла.

У n-угольника n вершин, значит, всего внешних углов у n-угольника 2n.

Поскольку оба внешних угла при одной вершине равны, говоря о сумме внешних углов n-угольника, рассматривают внешние углы, взятые по одному при каждой вершине.

(о сумме внешних углов выпуклого многоугольника)

Сумма внешних углов выпуклого многоугольника, взятых по одному при каждой вершине, равна 360º.

Как найти сумму внешних углов четырехугольникаДано :

Как найти сумму внешних углов четырехугольника

∠1, ∠2, ∠3, …, ∠n — внешние углы при вершинах

Как найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольника

Аналогично, сумма внешнего и внутреннего углов при каждой вершине n — угольника равна 180º.

Значит, сумма всех внутренних углов многоугольника и всех его внешних углов (взятых по одному при каждой вершине) равна 180º∙n.

Следовательно, сумма всех внешних углов

Как найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольника

Что и требовалось доказать .

Видео:Внешний угол треугольникаСкачать

Внешний угол треугольника

2 Comments

Вроде бы ошибка в написании условия.Вы хотите доказать,что сумма внешних углов = 180 градусов.

Видео:Сумма внутренних углов многоугольника. Выпуклые и невыпуклые многоугольники. 8 класс.Скачать

Сумма внутренних углов многоугольника. Выпуклые и невыпуклые многоугольники. 8 класс.

Четырехугольник — виды и свойства с примерами решения

Содержание:

Четырёхугольник — это фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков. При этом, никакие три из указанных точек не должны быть расположены на одной прямой, а соединяющие их отрезки не должны пересекаться. Данные точки называются вершинами четырёхугольника, а соединяющие их отрезки — сторонами четырёхугольника.

Как найти сумму внешних углов четырехугольника

Вершины, являющиеся концами одной стороны четырёхугольника, называются соседними, а вершины, не принадлежащие одной стороне — противолежащими. Стороны, имеющие общую вершину, называются соседними сторонами, а не имеющие общих вершин — противолежащими сторонами. Отрезки, соединяющие противолежащие вершины, называются диагоналями четырёхугольника. Точки, принадлежащие четырёхугольнику, делят плоскость q на два множества, которые образуют две области — внутреннюю и внешнюю.

Как найти сумму внешних углов четырехугольника

Четырёхугольник называется выпуклым, если все точки, принадлежащие внутренней области, находятся в одной полуплоскости от линии, содержащей любую сторону четырёхугольника, если эти точки находятся в разных полуплоскостях, то четырёхугольник называется невыпуклым (вогнутым).

Как найти сумму внешних углов четырехугольника

Если соединить любые две точки внутренней области выпуклого многоугольника, то отрезок, соединяющий эти точки, целиком находится во внутренней области четырёхугольника.

Диагонали выпуклого четырёхугольника находятся во внутренней области. У невыпуклого четырёхугольника одна из диагоналей находится во внешней области. Каждая из двух диагоналей выпуклого четырёхугольника делит его на два треугольника.

Как найти сумму внешних углов четырехугольника

Видео:Чему равна сумма углов выпуклого многоугольникаСкачать

Чему равна сумма углов выпуклого многоугольника

Внутренние и внешние углы четырехугольника

Угол, смежный любому углу выпуклого четырёхугольника, называется внешним углом. Из любой вершины четырёхугольника можно провести два внешних угла, которые являются вертикальными углами и соответственно равны друг другу. Поэтому, говоря о внешнем угле четырёхугольника, мы будем иметь в виду, один из них. На рисунке для внутренних углов Как найти сумму внешних углов четырехугольникауглы Как найти сумму внешних углов четырехугольникаявляются внешними.

Как найти сумму внешних углов четырехугольника

Каждый внутренний угол выпуклого четырёхугольника меньше Как найти сумму внешних углов четырехугольникаГрадусная мера внутреннего угла невыпуклого четырёхугольника может быть больше Как найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольника

Сумма внутренних углов выпуклого четырёхугольника

Теорема. Сумма внутренних углов выпуклого четырёхугольника равна Как найти сумму внешних углов четырехугольникаКак найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольника

Докажите теорему, основываясь на том, что сумма внутренних углов треугольника равна Как найти сумму внешних углов четырехугольникаДоказательство представьте в виде двухстолбчатой таблицы.

Сумма внешних углов выпуклого четырёхугольника

Теорема. Сумма внешних углов выпуклого четырёхугольника равна Как найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольника

Докажите теорему, опираясь на то, что внешний и внутренний угол, при каждой вершине являются смежными углами.

Параллелограмм

Параллелограмм и его свойства

Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны. Как найти сумму внешних углов четырехугольника

Теорема 1. Противоположные стороны параллелограмма конгруэнтны. Как найти сумму внешних углов четырехугольника

Теорема 2. Противоположные углы параллелограмма конгруэнтны. Как найти сумму внешних углов четырехугольника

Теорема 3. Сумма углов, прилежащих к одной стороне параллелограмма равна Как найти сумму внешних углов четырехугольникаКак найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольника

Теорема 4. Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам. Как найти сумму внешних углов четырехугольника

Теорема 5. Диагонали параллелограмма делят его на два конгруэнтных треугольника. Как найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольника

Признаки параллелограмма

Теорема 1. Четырёхугольник у которого две противоположные стороны конгруэнтный параллельны есть параллелограмм.

Теорема 2. Четырёхугольник с попарно конгруэнтными сторонами есть параллелограмм.

Теорема 3. Если диагонали четырёхугольника пересекаются и в точке пересечения делятся по полам, то этот четырёхугольник есть параллелограмм.

Прямоугольник

Параллелограмм, все углы которого прямые, называется прямоугольником.

Все свойства параллелограмма относятся к прямоугольнику.

Наряду с этим прямоугольник имеет следующее свойство:

Теорема. Диагонали прямоугольника конгруэнтны. Как найти сумму внешних углов четырехугольника

Признак прямоугольника

Параллелограмм, у которого диагонали конгруэнтны есть прямоугольник.

Как найти сумму внешних углов четырехугольника

Ромб и квадрат

Свойства ромба

Параллелограмм, у которого все стороны конгруэнтны, называется ромбом. Все свойства параллелограмма относятся к ромбу. Наряду с этим, ромб обладает следующими свойствами:

Теорема 1. Диагонали ромба являются биссектрисами его углов и пересекаются под прямым утлом. Как найти сумму внешних углов четырехугольника

Теорема 2. (Обратная георема). Параллелограмм, у которого диагонали перпендикулярны, есть ромб. Если Как найти сумму внешних углов четырехугольникато параллелограмм Как найти сумму внешних углов четырехугольникаявляется ромбом.

Как найти сумму внешних углов четырехугольника

Доказательство теоремы 1.

Дано: Как найти сумму внешних углов четырехугольникаромб.

Докажите, что Как найти сумму внешних углов четырехугольника

Доказательство (словестное): По определению ромба Как найти сумму внешних углов четырехугольникаПри этом, так как ромб является параллелограммом, а диагонали параллелограмма делятся точкой пересечения пополам, тогда можно записать, что Как найти сумму внешних углов четырехугольникаравнобедренный. Медиана Как найти сумму внешних углов четырехугольника(так как Как найти сумму внешних углов четырехугольника), является также и биссектрисой и высотой. Т.е. Как найти сумму внешних углов четырехугольникаТак как Как найти сумму внешних углов четырехугольникаявляется прямым углом, то Как найти сумму внешних углов четырехугольника. Аналогичным образом можно доказать, что Как найти сумму внешних углов четырехугольника

Если четырёхугольник является ромбом или квадратом, то справедливы следующие утверждения.

Ромб:

  • 1. Все свойства параллелограмма действительны для ромба.
  • 2. Все стороны конгруэнтны.
  • 3. Диагонали взаимно перпендикулярны.
  • 4. Диагонали ромба делят его углы пополам.

Квадрат:

  • 1. Все свойства прямоугольника и ромба действительны для квадрата.
  • 2. Все углы прямые.
  • 3. Все стороны конгруэнтны.
  • 4. Диагонали равны, взаимно перпендикулярны, делятся точкой пересечения пополам, являются биссектрисами углов квадрата.

Как найти сумму внешних углов четырехугольника

Трапеция

Четырёхугольник, у которого только две стороны параллельны, называется трапецией.

Параллельные стороны трапеции называются основаниями, не параллельные стороны называются боковыми сторонами.

Как найти сумму внешних углов четырехугольника

Трапеция, у которой боковые стороны равны называется равнобедренной трапецией.

Трапеция, у которой одна из боковых сторон перпендикулярна основанию называется прямоугольной трапецией.

Теорема 1. В равнобедренной трапеции углы, прилежащие к основанию конгруэнтны. Как найти сумму внешних углов четырехугольника

Теорема 2. Диагонали равнобедренной трапеции конгруэнтны. Как найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольника

План доказательства теоремы 2

Дано: Как найти сумму внешних углов четырехугольникаравнобедренная трапеция. Как найти сумму внешних углов четырехугольника

Докажите: Как найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольника

Средняя линия треугольника

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне конгруэнтные отрезки, то они отсекают конгруэнтные отрезки и на другой его стороне. Если Как найти сумму внешних углов четырехугольникатогда Как найти сумму внешних углов четырехугольникаЗапишите в тетради доказательство теоремы, заполнив пропущенные строки.

Доказательство: через точку Как найти сумму внешних углов четырехугольникапроведем параллельную прямую к прямой Как найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольника

Если в условии теоремы Фалеса, вместо угла взять две произвольные прямые, то результат не изменится.

Исследование: 1) В треугольнике Как найти сумму внешних углов четырехугольникачерез точку Как найти сумму внешних углов четырехугольника— середину стороны Как найти сумму внешних углов четырехугольникапроведите прямую параллельную Как найти сумму внешних углов четырехугольникаКакая фигура получилась? Является ли Как найти сумму внешних углов четырехугольникатрапецией? Измерьте и сравните основания полученной трапеции. 2) Измерьте и сравните длины отрезков Как найти сумму внешних углов четырехугольникаМожно ли утверждать, что Как найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольника

Определение: Отрезок, соединяющий середины двух сторон треугольника называется средней линией этого треугольника. Теорема. Средняя линия, соединяющая середины двух сторон треугольника, параллельна третьей стороне и равна ее половине Как найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольника

Доказательство. Пусть дан треугольник Как найти сумму внешних углов четырехугольникаи его средняя линия Как найти сумму внешних углов четырехугольникаПроведём через точку Как найти сумму внешних углов четырехугольникапрямую параллельную стороне Как найти сумму внешних углов четырехугольникаПо теореме Фалеса, она проходит через середину стороны Как найти сумму внешних углов четырехугольникат.е. совпадает со средней линией Как найти сумму внешних углов четырехугольникаТ.е. средняя линия Как найти сумму внешних углов четырехугольникапараллельна стороне Как найти сумму внешних углов четырехугольникаТеперь проведём среднюю линию Как найти сумму внешних углов четырехугольникаТ.к. Как найти сумму внешних углов четырехугольникато четырёхугольник Как найти сумму внешних углов четырехугольникаявляется параллелограммом. По свойству параллелограмма Как найти сумму внешних углов четырехугольникаПо теореме Фалеса Как найти сумму внешних углов четырехугольникаТогда Как найти сумму внешних углов четырехугольникаТеорема доказана.

Средняя линия трапеции

Средней линией трапеции называется отрезок, соединяющим середины боковых сторон трапеции.

Как найти сумму внешних углов четырехугольника

Теорема. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Как найти сумму внешних углов четырехугольника

Доказательство: Через точку Как найти сумму внешних углов четырехугольникаи точку Как найти сумму внешних углов четырехугольникасередину Как найти сумму внешних углов четырехугольникапроведём прямую и обозначим точку пересечения со стороной Как найти сумму внешних углов четырехугольникачерез Как найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольника

Координаты середины отрезка

Исследование: Начертите числовую ось. Постройте окружность с центром в точке Как найти сумму внешних углов четырехугольникарадиусом 3 единицы. Вычислите значение выражения Как найти сумму внешних углов четырехугольникаЕсть ли связь между значением данного выражения и координатой точки Как найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольника

Координаты середины отрезка

1) Пусть на числовой оси заданы точки Как найти сумму внешних углов четырехугольникаи Как найти сумму внешних углов четырехугольникаи точка Как найти сумму внешних углов четырехугольникакоторая является серединой отрезка Как найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольникато Как найти сумму внешних углов четырехугольникаа отсюда следует, что Как найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольника

2) По теореме Фалеса, если точка Как найти сумму внешних углов четырехугольникаявляется серединой отрезка Как найти сумму внешних углов четырехугольникато на оси абсцисс точка Как найти сумму внешних углов четырехугольникаявляется соответственно координатой середины отрезка концы которого находятся в точках Как найти сумму внешних углов четырехугольникаи Как найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольника

3) Координаты середины отрезка Как найти сумму внешних углов четырехугольникас концами Как найти сумму внешних углов четырехугольникаи Как найти сумму внешних углов четырехугольникаточки Как найти сумму внешних углов четырехугольниканаходятся так:

Как найти сумму внешних углов четырехугольника

Убедитесь, что данная формула верна в случае, если отрезок Как найти сумму внешних углов четырехугольникапараллелен одной из осей координат.

Теорема Пифагора

В этом разделе вы научитесь:

  • различать рациональные и иррациональные числа;
  • упрощать выражения, содержащие квадратные корни;
  • решать задания на извлечение квадратного корня;
  • основам теоремы Пифагора;
  • решать практические задачи, применяя теорему Пифагора.

При решении таких задач как вычисления силы шторма на море, скорости автомобиля при аварии, определения места приземления при прыжке с парашютом часто приходится проводить вычисления с числами, стоящими под знаком корня.

Теорема Пифагора очень часто используется при решении геометрических задач.

Имя Пифагора ассоциируется с прямоугольным треугольником и соотношением между его сторонами. Греческий учёный Пифагор, живший в VI веке до нашей эры, является основателем школы, в которой преподавались музыка, гимнастика, философия и геометрия. Ученики школы называли себя Пифагорейцами. Они провозглашали гармонию музыки и чисел в природе и не верили в существование иррациональных чисел.

Практическая работа:

Шаг 1. Вырежьте из картона два одинаковых квадрата.

Шаг 2. На стороне одного из них отметьте отрезки Как найти сумму внешних углов четырехугольникакак показано на рисунке и разрежьте его на два квадрата и два прямоугольника.

Как найти сумму внешних углов четырехугольника

Шаг 3. Полученные фигуры расположите, как показано на рисунке.

Как найти сумму внешних углов четырехугольника

Шаг 4. На сторонах другого квадрата отметьте отрезки Как найти сумму внешних углов четырехугольникакак показано на рисунке и отрежьте четыре прямоугольных треугольника.

Как найти сумму внешних углов четырехугольника

Шаг 5. Что вы можете сказать о конгруэнтности данных треугольников? К какому виду относится оставшаяся фигура, после того, как вы отрезали треугольники и убрали их? Чему равен каждый внутренний угол данного четырёхугольника?

Шаг 6. Расположите полученные фигуры, как показано на рисунке.

Как найти сумму внешних углов четырехугольника

Шаг 7. Сравните результаты, которые вы получили на 3 и 6 шагах. К какому выводу вы пришли?

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Как найти сумму внешних углов четырехугольника

Если рассмотреть площади квадратов, построенных на сторонах прямоугольного треугольника, то теорему Пифагора можно перефразировать так: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах: Как найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольника

Если в прямоугольном треугольнике заданы две стороны, то третью сторону можно найти по теореме Пифагора.

Пример:

Найдём длину катета на рисунке:

Как найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольника

Историческая справка: Пифагор родился в 569 году до нашей эры на острове Самос в Греции. В истории его имя увековечено теоремой, которая называется теоремой Пифагора. Она известна своей простотой и практическим значением. Об этой теореме знали ещё задолго до Пифагора. Однако, из письменных источников следует, что впервые её доказал именно Пифагор. Помимо оригинального доказательства теоремы самим Пифагором, известны также доказательстве» Эвклида, Леонардо да Винчи, Президента Америки Джеймса Гарфилда. В 1940 году широкой публике была представлена книга, где приводилось 370 доказательств теоремы. На рисунке вы видите статую, возведённую в честь Пифагора на его родине на острове Самос.

Обратная теорема:

Если квадрат одной из сторон треугольника равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным треугольником. Если Как найти сумму внешних углов четырехугольникато, Как найти сумму внешних углов четырехугольника— прямоугольный.

Как найти сумму внешних углов четырехугольника

Прямоугольные треугольники, которых выражаются натуральными числами, называются Пифагоровыми треугольниками. Самый распространённый прямоугольный треугольник имеет стороны 3; 4; 5. Древние египтяне повсеместно пользовались этим треугольником для измерений. Такой треугольник называется Египетским треугольником. Треугольники со сторонами 5,12,13; 8,15,17; 7,24,25. также являются треугольниками Пифагора. А эти числа называются Пифагоровыми тройками. Если числа Как найти сумму внешних углов четырехугольникаявляются Пифагоровыми тройками, то и числа Как найти сумму внешних углов четырехугольникатакже являются Пифагоровыми тройками.

Видео:Найдите углы четырёхугольникаСкачать

Найдите углы четырёхугольника

Справочный материал по четырёхугольнику

Обозначим четыре точки, например А, В, С, D, из которых никакие три не лежат на одной прямой. Последовательно соединим их непересекающимися отрезками АВ, ВС, CD, DA. Получим четырёхугольник ABCD.

Как найти сумму внешних углов четырехугольника(рис. 1).

Точки А, В, С, D — вершины четырёхугольника, отрезки АВ, ВС, CD, DA — его стороны. Углы DAB, ABC, BCD, CDA — это углы четырёхугольника. Их также обозначают одной буквой — Как найти сумму внешних углов четырехугольникаКак найти сумму внешних углов четырехугольника

Вершины, стороны и углы четырёхугольника называют его элементами. ? | Почему фигуры, изображённые на рисунках 2 и 3, не являются четырёхугольниками?

У фигуры на рисунке 2 отрезки АС и BD пересекаются, а у фигуры на рисунке 3 точки A, D, С лежат на одной прямой. Как найти сумму внешних углов четырехугольника

Четырёхугольник обозначают, последовательно записывая его вершины, начиная с любой из них. Например, четырёхугольник на рисунке 4 можно обозначить так: ABCD, или BCDA, или CDAB и т. д. Но для данного четырёхугольника запись, например, ADBC либо CDBA — неверна.

Две вершины, два угла или две стороны четырёхугольника могут быть либо соседними, либо противоположными. Например, в четырёхугольнике ABCD (рис. 4) вершины А и D, ZA и ZD, стороны AD и АВ — соседние, а вершины А и С, Как найти сумму внешних углов четырехугольника, стороны AD и ВС — противоположные.

Отрезки, соединяющие противоположные вершины четырёхугольника, называются его диагоналями. На рис. 4 отрезки АС и BD — диагонали четырёхугольника ABCD.

Четырёхугольники бывают выпуклыми и невыпуклыми.

Если четырёхугольник лежит по одну сторону от каждой прямой, соединяющей две его соседние вершины, то он выпуклый. На рисунке 5 четырёхугольник выпуклый, а на рисунке б — невыпуклый, поскольку он не лежит по одну сторону от прямой, проходящей через вершины М и N.

Как найти сумму внешних углов четырехугольника

Мы будем изучать лишь выпуклые четырёхугольники. Сумма длин всех сторон четырёхугольника называется его периметром. Периметр обозначают буквой Р.

Записать, что периметр четырёхугольника ABCD равен 40 см, можно так: Как найти сумму внешних углов четырехугольника=40 cm

Пример:

Докажите, что каждая сторона четырёхугольника меньше суммы трёх других его сторон.

Решение:

Диагональ АС четырёхугольника ABCD делит его на два треугольника ABC и ADC (рис. 7). В Как найти сумму внешних углов четырехугольника+ CD (по неравенству треугольника). Тогда Как найти сумму внешних углов четырехугольника. Аналогично АВ 45 и DC и секущей АС. Из равенства треугольников ABC и CD А следует: 1) АВ = DC, ВС = AD 2) Как найти сумму внешних углов четырехугольника. Углы А и С параллелограмма равны как суммы равных углов.

Может ли в параллелограмме быть только один острый угол? Не может, так как, согласно доказанной теореме, таких углов два.

Пример №1

Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°. Докажите это.

Как найти сумму внешних углов четырехугольника

Решение:

Как найти сумму внешних углов четырехугольника(рис. 31) по свойству внутренних односторонних углов при параллельных прямых ВС и AD и секущей АВ. Аналогично Как найти сумму внешних углов четырехугольника(АВ CD, ВС-секущая), Как найти сумму внешних углов четырехугольника(ВС || AD, CD — секущая), Как найти сумму внешних углов четырехугольника(АВ || CD, AD- секущая).

Теорема (свойство диагоналей параллелограмма).

Диагонали параллелограмма точкой их пересечения делятся пополам.

Дано: ABCD — параллелограмм (рис. 32), АС и BD — диагонали, О — точка пересечения диагоналей. Доказать: АО = ОС, ВО = OD.

Как найти сумму внешних углов четырехугольника

Доказательство. Как найти сумму внешних углов четырехугольникапо стороне А и прилежащим к ней углам. Из них ВС = AD как противоположные стороны параллелограмма, Как найти сумму внешних углов четырехугольникакак внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей BD, (BC || AD, АС— секущая). Из равенства треугольников AOD и СОВ следует: АО = ОС, ВО = OD.

Для того чтобы доказать равенство отрезков (углов) в параллелограмме, докажите равенство треугольников, соответствующими элементами которых являются эти отрезки (углы).

Свойства параллелограмма приведены в таблице 3.Как найти сумму внешних углов четырехугольника

1. Возникает вопрос: Сколько данных необходимо для построения параллелограмма ?Таких данных должно быть три, среди которых — не более одного из его углов (один угол параллелограмма определяет остальные углы).

2. Название «параллелограмм» (parallelogrammon) происходит от сочетания греческих слов: «параллелос» — идущий рядом и «грамма» — линия.

Этот термин впервые упоминается в «Началах» Евклида (III в. до н. э.). Сначала вместо термина «параллелограмм» древнегреческий учёный использовал словосочетание «образованная параллельными линиями площадь» (часть плоскости, ограниченная двумя парами параллельных прямых).

Признаки параллелограмма

Решaя задачи, иногда требуется установить, что данный четырёхугольник — параллелограмм. Для этого используют признаки параллелограмма.

Теорема (признак параллелограмма).

Если противоположные стороны четырёхугольника попарнo равны, то такой четырёхугольник — параллелограмм.

Как найти сумму внешних углов четырехугольника

Дано: ABCD — четырёхугольник (рис. 52), АВ = DC, ВС = AD.

Доказать: ABCD— параллелограмм.

Доказательство. Проведём диагональ BD (рис. 52). Как найти сумму внешних углов четырехугольникапо трём сторонам. У них BD— общая сторона, АВ = DC и ВС = AD по условию. Из равенства треугольников следует: Как найти сумму внешних углов четырехугольника Как найти сумму внешних углов четырехугольникаУглы CBD и ADB— внутренние накрест лежащие при прямых ВС и AD и секущей BD. Поэтому ВС || AD. Углы ABD и СОВ также внутренние накрест лежащие при прямых АВ и DC и секущей BD. Поэтому АВ || DC. Так как в четырёхугольнике ABCD ВС ||AD и АВ ||DC, то, по определению, этот четырёхугольник — параллелограмм.

Можно ли считать четырёхугольник параллелограммом, если в нём две противоположные стороны равны, а две другие — параллельны?

Нет, нельзя. На рисунке 53 АВ = CD, ВС || AD, но четырёхугольник ABCD — не параллелограмм. Как найти сумму внешних углов четырехугольника

Теорема (признак параллелограмма).

Если в четырёхугольнике две противоположные стороны равны и параллельны, то такой четырёхугольник — параллелограмм.

Дано: ABCD — четырёхугольник (рис. 54), и АВ = DC, АВ || DC.

Как найти сумму внешних углов четырехугольника

Доказать: ABCD — параллелограмм.

Доказательство. Проведём диагональ АС (рис. 54). Как найти сумму внешних углов четырехугольникапо двум сторонам и углу между ними. У них АС — общая сторона, АВ = DC по условию, Как найти сумму внешних углов четырехугольникакак внутренние накрест лежащие углы при параллельных прямых АВ и DC и секущей АС. Из равенства треугольников следует: Как найти сумму внешних углов четырехугольникаНо углы DAC и ВС А — внутренние накрест лежащие при прямых ВС и AD и секущей АС. Поэтому ВС || AD. Поскольку в четырёхугольнике ABCD AD || БС(по доказанному) и АВ || DC (по условию), то, по определению, этот четырёхугольник — параллелограмм.

Пример №2 (признак параллелограмма).

Если диагонали четырёхугольника делятся точкой их пересечения пополам, то такой четырёхугольник — параллелограмм. Докажите это.

Как найти сумму внешних углов четырехугольника

Решение:

Пусть ABCD—данный четырёхугольник, О — точка пересечения его диагоналей и ВО= OD, АО= ОС (рис. 55). Докажем, что ABCD — параллелограмм. Как найти сумму внешних углов четырехугольникапо двум сторонам и углу между ними. У них ВО = OD, АО = ОС по условию, Как найти сумму внешних углов четырехугольникакак вертикальные. Из равенства треугольников следует: ВС= AD и Как найти сумму внешних углов четырехугольникаНо углы ОВС и ODA — внутренние накрест лежащие при прямых BCuADh секущей BD. Поэтому BC\AD.

Поскольку в четырёхугольнике ABCD ВС= AD и ВС || AD, то, согласно доказанному признаку, этот четырёхугольник — параллелограмм.

Чтобы установить, что четырёхугольник — параллелограмм, докажите, что в нём:

  1. либо противоположные стороны попарно параллельны (определение параллелограмма),
  2. либо противоположные стороны попарно равны (признак),
  3. либо две противоположные стороны равны и параллельны (признак),
  4. либо диагонали делятся точкой их пересечения пополам (признак).

Вам уже знакомы понятия «необходимо», «достаточно», «необходимо и достаточно». В таблице 5 рассмотрите пары утверждений А и В и выясните смысл этих понятий.

Как найти сумму внешних углов четырехугольника

Обратите внимание, что утверждения «Л достаточно для в» и «А необходимо для В» — взаимно обратные. Их можно объединить и сформулировать следующим образом.

Для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его противоположные стороны были попарно равны.

Иногда вместо «необходимое и достаточное условие» говорят «необходимый и достаточный признак», а чаще — просто «признак». Поэтому теоремы этого параграфа называем «признаками параллелограмма».

Прямоугольник

Параллелограммы, как и —у треугольники, можно разделить на виды. Прямоугольник — один из видов параллелограмма. На рисунке 73 вы видите параллелограмм ABCD являющийся прямоугольником. Дайте определение прямоугольнику и сравните его с приведённым в учебнике. Как найти сумму внешних углов четырехугольника

Параллелограмм, у которого все углы прямые, называется прямоугольником.

Поскольку прямоугольник — частный вид параллелограмма, то ему присущи все свойства параллелограмма:

  1. противоположные стороны равны;
  2. противоположные углы равны;
  3. диагонали делятся точкой их пересечения пополам.

Кроме этих свойств прямоугольник имеет ещё и особое свойство.

Дано: ABCD — прямоугольник, АС и BD — диагонали (рис. 74).

Как найти сумму внешних углов четырехугольника

Доказать: АС = BD.

Доказательство. Прямоугольные треугольники ACDw DBA равны по двум катетам. При этом AD — общий катет, а катеты АВ и DC равны как противоположные стороны параллелограмма. Из равенства треугольников следует: АС = BD.

Свойства прямоугольника приведены в таблице 8.

Как найти сумму внешних углов четырехугольникаМожно ли утверждать, что параллелограмм, в котором диагонали равны, является прямоугольником? Да, но это нужно доказать.

Пример №3 (признак прямоугольника).

Если диагонали параллелограмма равны, то такой параллелограмм — прямоугольник. Докажите это.

Решение:

Пусть ABCD — параллелограмм, в котором АС = BD (рис. в табл. 8). Докажем, что Как найти сумму внешних углов четырехугольника. Как найти сумму внешних углов четырехугольникапо трём сторонам. У них AD — общая сторона, АС = BD по условию, АВ = DC — как противоположные стороны параллелограмма. Из этого следует, что Как найти сумму внешних углов четырехугольника. Поскольку в параллелограмме противоположные углы равны, то: Как найти сумму внешних углов четырехугольника. По свойству углов четырёхугольника, Как найти сумму внешних углов четырехугольника

Следовательно, Как найти сумму внешних углов четырехугольника: 4 = 90°, то есть параллелограмм ABCD — прямоугольник.

Для того чтобы установить, что данный параллелограмм — прямоугольник, докажите, что у него: либо все его углы прямые (определение прямоугольника), либо диагонали равны (признак).

Можно ли утверждать, что четырёхугольник, в котором диагонали равны, — это прямоугольник? Нет, нельзя (см. рис. 75). Необходимо проверить, выполняется ли один из признаков параллелограмма. Например, делятся ли диагонали точкой их пересечения пополам.

Как найти сумму внешних углов четырехугольника

Возникает вопрос: Можно ли сформулировать другие определения прямоугольника ?

В младших классах прямоугольником называли четырёхугольник, все углы в котором прямые. Теперь мы определили прямоугольник как частный вид параллелограмма. Возможны и такие определения прямоугольника: параллелограмм, в котором все углы равны (действительно, сумма углов параллелограмма составляет 360°, тогда каждый из них равен 90°); параллелограмм, в котором есть прямой угол (действительно, в параллелограмме сумма смежных углов составляет 180е, а противоположные углы равны. Если один из его углов прямой, то и три остальные — прямые). Эти определения прямоугольника эквивалентны.

Следовательно, существуют разные определения одного и того же понятия.

Ромб. Квадрат

Могут ли в параллелограмме все стороны быть равными? Да, могут. На рисунке 94 в параллелограмме ABCD АВ = ВС = = CD = AD. Это ещё один вид параллелограмма — ромб.

Как найти сумму внешних углов четырехугольника

Параллелограмм, у которого все стороны равны, называется ромбом.

Можно ли утверждать, что параллелограмм является ромбом, если две его смежные стороны равны? Да, можно. Равенство всех сторон такого параллелограмма следует из свойства: противоположные стороны параллелограмма равны.

Теорема (свойства диагоналей ромба). Диагонали ромба взаимно перпендикулярны. Диагонали ромба делят его углы пополам.

Как найти сумму внешних углов четырехугольника

Дано: ABCD — ромб (рис. 95), О— точка пересечения диагоналей АС и BD.

Доказать: Как найти сумму внешних углов четырехугольника

Доказательство. Согласно определению ромба АВ = ВС, поэтому треугольник ABC— равнобедренный. Так как ромб ABCD— параллелограмм, то АО — ОС. Отсюда ВО— медиана равнобедренного треугольника ABC, следовательно, высота и биссектриса этого треугольника. Поэтому Как найти сумму внешних углов четырехугольника. Как найти сумму внешних углов четырехугольника

Аналогично доказываем, что диагональ BD делит пополам угол D, а диагональ АС— углы А и С ромба ABCD.

Свойства ромба приведены в таблице 10. Таблица 1 О

Как найти сумму внешних углов четырехугольника

Пример №4 (признак ромба)

Докажите, что параллелограмм, диагонали которого взаимно перпендикулярны, является ромбом.

Решение:

Пусть ABCD — данный параллелограмм, в котором Как найти сумму внешних углов четырехугольника(рис. 96). Докажем, что ABCD— ромб. Как найти сумму внешних углов четырехугольникапо двум сторонами и углу между ними.

Как найти сумму внешних углов четырехугольника

Так как ромб — это частный вид параллелограмма, то он имеет все свойства параллелограмма (назовите их). Кроме того, ромб обладает особыми свойствами. У них сторона АО — общая, OB = OD по свойству диагоналей параллелограмма, Как найти сумму внешних углов четырехугольникапо условию. Из равенства треугольников следует: АВ = AD. Тогда АВ = CD и AD = ВС по свойству противоположных сторон параллелограмма. Итак, все стороны параллелограмма равны, поэтому он является ромбом.

Для того чтобы установить, что данный параллелограмм — ромб, докажите, что в нем:

  • либо все стороны равны (определение ромба),
  • либо диагонали взаимно перпендикулярны (признак).

Прямоугольник, в котором все стороны равны, называется квадратом.

На рисунке 97 вы видите квадрат ABCD.

Как найти сумму внешних углов четырехугольника

Существуют и другие определения квадрата: ромб, в котором все углы прямые, называется квадратом; прямоугольник, в котором все стороны равны, называется квадратом; параллелограмм, в котором все стороны равны и все углы прямые, называется квадратом. Следовательно, квадрат имеет все свойства параллелограмма, прямоугольника и ромба. Перечислим свойства квадрата.

  1. Противоположные стороны и противоположные углы квадрата равны. Диагонали квадрата в точке пересечения делятся пополам (свойства параллелограмма).
  2. Диагонали квадрата равны (свойство прямоугольника).
  3. Диагонали квадрата взаимно перпендикулярны и делят его углы пополам (свойства ромба).

Квадрат является частным видом и ромба, и прямоугольника, и параллелограмма. Ромб и прямоугольник — это частные виды параллелограмма. Соотношение между видами параллелограммов показано на Как найти сумму внешних углов четырехугольника

1. Рассмотрите таблицу классификации параллелограммов по соседним углам и смежным сторонам. Предложите собственную классификацию изученных видов параллелограмма.

Как найти сумму внешних углов четырехугольника

2. Кроме параллелограммов есть ещё один вид четырёхугольников — дельтоид. Эту фигуру получим, если два равнобедренных треугольника ABC и ADCc равными основаниями АС приложить друг к другу так, как показано на рисунке 99.

Как найти сумму внешних углов четырехугольника

Свойства дельтоида следуют из свойств равнобедренного треугольника. Например, диагонали взаимно перпендикулярны, одна из них делит углы пополам и другую диагональ — пополам. Сформулируйте, пользуясь рисунком, другие свойства дельтоида. Если равнобедренные треугольники, из которых образован дельтоид, равны, то такой дельтоид является ромбом. Если равнобедренные треугольники к тому же прямоугольные, то дельтоид является квадратом.

3. Слово «ромб» происходит от греческого rhombos — юла, вращение. Слово «квадрат» происходит от латинского quadratum — четырёхугольник. Квадрат был первым четырёхугольником, который рассматривался в геометрии.

Теорема Фалеса. Средняя линия треугольника

Начертите угол ABC (рис. 117).

Как найти сумму внешних углов четырехугольника

Произвольным раствором циркуля отложите на стороне АВ угла равные отрезки Как найти сумму внешних углов четырехугольникаи Как найти сумму внешних углов четырехугольникаПроведите с помощью чертёжного угольника и линейки через точки Как найти сумму внешних углов четырехугольникапараллельные прямые, которые пересекут сторону ВС этого угла в точках Как найти сумму внешних углов четырехугольникаПри помощи циркуля сравните длины отрезков Как найти сумму внешних углов четырехугольникаСделайте вывод.

Теорема Фалёса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Дано: Как найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольника

Доказать: Как найти сумму внешних углов четырехугольника

Доказательство. Проведём через точки Как найти сумму внешних углов четырехугольникапрямые Как найти сумму внешних углов четырехугольникапараллельные ВС. Как найти сумму внешних углов четырехугольникапо стороне и прилежащим к ней углам. У них Как найти сумму внешних углов четырехугольникапо условию, Как найти сумму внешних углов четырехугольникакак соответственные углы при параллельных прямых. Из равенства этих треугольников следует, что Как найти сумму внешних углов четырехугольникаи Как найти сумму внешних углов четырехугольникакак противоположные стороны параллелограммов Как найти сумму внешних углов четырехугольника

Справедлива ли теорема Фалеса, если вместо сторон угла взять две произвольные прямые? Да, справедлива. Параллельные прямые, пересекающие две заданные прямые и отсекающие на одной прямой равные отрезки, отсекают равные отрезки и на другой прямой (рис. 119).

Как найти сумму внешних углов четырехугольника

Пример №5

Разделите данный отрезок АВ на пять равных частей.

Решение:

Проведём из точки А луч АС, не лежащий на прямой АВ (рис. 120).

Как найти сумму внешних углов четырехугольника

Отложим на луче АС пять равных отрезков: АА,Как найти сумму внешних углов четырехугольникаПроведём прямую Как найти сумму внешних углов четырехугольника. Через точки Как найти сумму внешних углов четырехугольникапроведём прямые, параллельные прямой Как найти сумму внешних углов четырехугольника. По теореме Фалеса, эти прямые делят отрезок АВ на пять равных частей.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

На рисунке 121 отрезок MN — средняя линия Как найти сумму внешних углов четырехугольника, так как точки М и N — середины сторон АВ и ВС.

Как найти сумму внешних углов четырехугольника

Теорема (свойства средней линии треугольника). Средняя линия треугольника параллельна третьей его стороне и равна её половине.

Дано: Как найти сумму внешних углов четырехугольника(рис. 122), AD = BD, СЕ= BE.

Как найти сумму внешних углов четырехугольника

Доказать: Как найти сумму внешних углов четырехугольника

Доказательство. 1) Пусть DE- средняя линия Как найти сумму внешних углов четырехугольника. Проведём через точку D прямую, параллельную АС. Согласно теореме Фалеса, она пересекает отрезок ВС в его середине £, то есть содержит среднюю линию DE. Следовательно DE || АС.

2) Проведём прямую EF|| АВ. По теореме Фалеса, прямая EFделит отрезок 1

АС пополам: Как найти сумму внешних углов четырехугольника. По построению, четырёхугольник ADEF- параллелограмм, поэтому DE= AF. Следовательно, Как найти сумму внешних углов четырехугольника

Пример №6

Докажите, что середины сторон четырёхугольника являются вершинами параллелограмма.

Решение:

Пусть ABC— данный четырёхугольник и М, N, Р, К — середины его сторон (рис. 123). Докажем, что MNPK — параллелограмм. Проведём диагональ AC. MN— средняя линия ААВС.

Как найти сумму внешних углов четырехугольника

Поэтому Как найти сумму внешних углов четырехугольника. КР— средняя линия треугольника ADC. Поэтому КР || АС и Как найти сумму внешних углов четырехугольника

Получаем: MN || АС и КР || АС, отсюда MN || КРКак найти сумму внешних углов четырехугольника, отсюда MN= КР. Противоположные стороны MN и КР четырёхугольника MNPK равны и параллельны, следовательно, это параллелограмм.

Если по условию задачи даны середины некоторых отрезков, то можно использовать свойства средней линии треугольника.

Древнегреческого учёного Фалеса из Милета (625 — 548 гг. до н. э.) считают одним из семи мудрецов мира. Гений Фалеса нашёл воплощение в разных сферах деятельности. Он занимался инженерным делом, был государственным деятелем, математиком, астрономом. Особой заслугой Фалеса является то, что он ввёл в математику идею доказательства. Учёный доказал, что углы при основании равнобедренного треугольника равны, что диаметр делит окружность на две равные части, что прямой угол можно вписать в полуокружность и т. д. Историки полагают, что именно Фалес начал использовать основные геометрические инструменты — циркуль и линейку. Учёный измерял высоту египетских пирамид по длине их теней, впервые предсказал солнечное затемнение, наблюдавшееся в 585 г. до н. э.

Как найти сумму внешних углов четырехугольника

Трапеция

Вы уже знаете, что четырёхугольник с попарно параллельными противоположными сторонами — параллелограмм.

На рисунке 143 изображён четырёхугольник ABCD, две стороны AD и ВС которого параллельны, а две другие — АВ и CD — непараллельны. Такой четырёхугольник — трапеция. Дайте определение трапеции и сравните его с приведённым в учебнике.

Как найти сумму внешних углов четырехугольника

Трапецией называется четырёхугольник, в которомдве стороны параллельны, а две другие — непараллельны.

Как найти сумму внешних углов четырехугольника

Параллельные стороны трапеции называются её основаниями, а непараллельные — боковыми сторонами. На рисунке 144 AD и ВС — основания трапеции, АВ и CD — боковые стороны.

Могут ли основания трапеции быть равными? Не могут, поскольку тогда получим параллелограмм.

Высотой трапеции называется перпендикуляр, проведённый из любой точки одного основания к другому основанию либо его продолжению (рис. 144).

Трапеция, в которой боковые стороны равны, называется равнобедренной. На рисунке 145 трапеция MNKP — равнобедренная, поскольку MN = КР.

Трапецию, один из углов которой прямой, называют прямоугольной. Трапеция ABCD (рис. 146) — прямоугольная, поскольку Как найти сумму внешних углов четырехугольника= 90*.

Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон.

На рисунке 147 отрезок EF — средняя линия трапеции ABCD, так как точки Е и F — середины боковых сторон АВ и CD.

Как найти сумму внешних углов четырехугольника

Теорема (свойства средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Дано: ABCD — трапеция с основаниями AD и ВС (рис. 148), EF— средняя линия. Доказать: Как найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольника

Доказательство. Поскольку EF — средняя линия трапеции ABCD, то АЕ= BE, DF= CF. Через точки В и проведём прямую, пересекающую продолжение основания ADb точке Q. Как найти сумму внешних углов четырехугольникаno стороне и прилежащим к ней углам. У них CF = FD по условию, Как найти сумму внешних углов четырехугольникакак вертикальные, Как найти сумму внешних углов четырехугольникавнутренние накрест лежащие углы при параллельных прямых ВС и АО и секущей CD. Из равенства треугольников следует: BF— F0, то есть средняя линия ЕF трапеции является средней линией треугольника АВО.

1) По свойству средней линии треугольника EF || АО, поэтому EF || AD. Поскольку AD || ВС, то EF\ ВС.

Пример №7 (свойство равнобедренной трапеции).

В равнобедренной трапеции углы при основании равны. Докажите это.

Решение:

Пусть в трапеции ABCD (рис. 149) АВ = CD. Докажем, что углы при основании AD равны.

Как найти сумму внешних углов четырехугольника

Проведём СЕ || АВ. Полученный четырёхугольник АВСЕ— параллелограмм, так как его противоположные стороны попарно параллельны. По свойству параллелограмма, АВ = СЕ, а по условию — АВ = CD. Следовательно, С£= CD и Как найти сумму внешних углов четырехугольникаравнобедренный. Поэтому Как найти сумму внешних углов четырехугольникасоответственные углы при параллельных прямых СЕ и АВ и секущей АЁ. Отсюда

Как найти сумму внешних углов четырехугольника

Если в условии задачи дана трапеция, то полезно такое дополнительное построение: проведите через вершину трапеции прямую, параллельную боковой стороне (рис. 149 или 150), и используйте свойства полученных параллелограмма и треугольника.

Решите предыдущую задачу, используя рисунок 150. Посмотрите на рисунок 151, где изображены изученные вами

Как найти сумму внешних углов четырехугольника

Центральные и вписанные углы

Проведём окружность с центром О и построим угол с вершиной в центре окружности (рис. 182). Получили центральный угол в окружности.

Угол с вершиной в центре окружности называется центральным углом. Как найти сумму внешних углов четырехугольникаКак найти сумму внешних углов четырехугольника

Теорема (о вписанном угле). Вписанный угол измеряется половиной дуги, на которую он опирается.

Дано: Как найти сумму внешних углов четырехугольника— вписанный в окружность с центром О (рис. 188 — 190).

Доказать: Как найти сумму внешних углов четырехугольника

Доказательство. Рассмотрим три случая расположения центра , окружности относительно сторон данного вписанного угла.

1. Центр окружности лежит на стороне вписанного угла (рис. 188). Проведём отрезок ОД тогда центральный угол АОС является внешним углом Как найти сумму внешних углов четырехугольника. По свойству внешнего угла треугольника, Как найти сумму внешних углов четырехугольникаКак найти сумму внешних углов четырехугольника— равнобедренный (ОВ= OA = R). Поэтому Как найти сумму внешних углов четырехугольникаизмеряется дугой АС. Следовательно, вписанный угол ABC измеряется половиной дуги АС.

2. Центр окружности лежит во внутренней области вписанного угла (рис. 189). Проведём луч ВО, тогда данный угол равен сумме двух углов:Как найти сумму внешних углов четырехугольника

Из доказанного в первом случае следует, что Как найти сумму внешних углов четырехугольникаизмеряется половиной дуги AD, a Как найти сумму внешних углов четырехугольника— половиной дуги DC. Поэтому Как найти сумму внешних углов четырехугольникаизмеряется суммой полудуг AD и DC, то J есть половиной дуги АС.

3. Центр круга лежит во внешней области вписанного угла (рис. 190). Проведём луч ВО, тогда: Как найти сумму внешних углов четырехугольника

Как найти сумму внешних углов четырехугольника

Следствие 1.

Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 191). Действительно, каждый из них измеряется половиной одной и той же дуги.

Следствие 2.

Вписанный угол, опирающийся на диаметр, — прямой (рис. 192). Действительно, такой угол измеряется половиной полуокружности, то есть 180°: 2 = 90°. Как найти сумму внешних углов четырехугольника

Равны ли вписанные углы, опирающиеся на равные дуги (рис. 193)? Да, так как каждый из этих углов измеряется половиной равных дуг, градусные меры которых равны.

Пример №8

Хорды окружности АВ и ВС образуют угол 30°. Найдите хорду АС, если диаметр окружности равен 10 см.

Решение:

Проведём диаметр CD и соединим точки A и D (рис. 194). Как найти сумму внешних углов четырехугольникакак вписанные, опирающиеся на дугу АС (следствие 1). Поэтому Как найти сумму внешних углов четырехугольника, так как опирается на диаметр окружности (следствие 2). Тогда в прямоугольном треугольнике ADC катет АС лежит против угла 30° и равен половине гипотенузы CD. Следовательно, Как найти сумму внешних углов четырехугольника

Для того чтобы доказать равенство двух углов, покажите, что они являются вписанными в одну окружность и опираются на одну и ту же дугу либо на равные дуги данной окружности.

Рассмотрим геометрическое место точек, которое используется при решении сложных задач на построение.

Пусть АВ — некоторый отрезок прямой а, М— произвольная точка, не лежащая на прямой a, Как найти сумму внешних углов четырехугольника(рис. 195). Тогда говорят: из точки М отрезок АВ виден под углом а.

Если описать окружность около Как найти сумму внешних углов четырехугольника(рис. 196), то из любой точки дуги АМВ (кроме точек А и В) отрезок АВ виден под углом а (следствие 1 из теоремы о вписанном угле). Поскольку точку можно взять и с другой стороны от прямой а, то существует ещё одна дуга, например ANB(рис. 197), из каждой точки которой (кроме точек А и В) отрезок АВ виден под углом а. Поэтому геометрическим местом точек, из которых отрезок АВ виден под углом а, является фигура, состоящая из двух дуг АМВ и AN В без точек А и В. Чтобы построить одну из двух дуг этого геометрического места точек для острого угла а, необходимо: Как найти сумму внешних углов четырехугольника

Вписанные и описанные четырёхугольники

Отметим на окружности четыре точки и соединим их хордами (рис. 222). Получили четырёхугольник, вписанный в окружность. Как найти сумму внешних углов четырехугольника

Четырёхугольник, все вершины которого лежат на окружности, называется вписанным в эту окружность, а окружность — описанной около этого четырехугольника.

Отметим на окружности четыре точки и проведём через них отрезки касательных, как показано на рисунке 223. Получили четырёхугольник, описанный около окружности.

Как найти сумму внешних углов четырехугольника

Четырёхугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность — вписанной в этот четырёхугольник.

Свойство вписанного четырёхугольника и его признак связаны с углами этого четырёхугольника.

Теорема (свойство углов вписанного четырёхугольника). Сумма противоположных углов вписанного четырёхугольника равна 180″.

Дано: четырёхугольник ABCD, вписанный в окружность (рис. 224).

Как найти сумму внешних углов четырехугольника

Доказать: Как найти сумму внешних углов четырехугольника

Доказательство. Углы А, В, Си D вписаны в окружность.

Из теоремы о вписанном угле следует: Как найти сумму внешних углов четырехугольника

Тогда Как найти сумму внешних углов четырехугольника

Сумма всех углов четырёхугольника равна 360°, а сумма углов А и С — 180°. Тогда Как найти сумму внешних углов четырехугольника

Около каждого ли четырёхугольника можно описать окружность? В отличие от треугольника не каждый четырёхугольник — вписанный. Приведём признак вписанного четырёхугольника без доказательства.

Теорема (признак вписанного четырёхугольника). Если в четырёхугольнике сумма двух противоположных углов равна 180е, то около такого четырёхугольника можно описать окружность.

Пример №9

Докажите, что около равнобедренной трапеции можно описать окружность.

Решение:

Пусть ABCD — равнобедренная трапеция с основаниями AD и ВС (рис. 225). Как найти сумму внешних углов четырехугольника

Докажем, что Как найти сумму внешних углов четырехугольника. В любой трапеции сумма углов, прилежащих к одной боковой стороне, равна 180° (следует из свойства параллельных прямых).

Поэтому, Как найти сумму внешних углов четырехугольника. По свойству равнобокой трапеции, Как найти сумму внешних углов четырехугольника

Тогда Как найти сумму внешних углов четырехугольникаи, согласно признаку вписанного четырёхугольника, трапеция ABCD— вписанная. Свойство описанного четырёхугольника и его признак связаны со сторонами этого четырёхугольника.

Теорема (свойство сторон описанного четырёхугольника). Суммы противоположных сторон описанного четырёхугольника равны.

Дано: четырёхугольник ABCD, описанный около окружности (рис. 226), Е, F, K и P — точки касания.

Как найти сумму внешних углов четырехугольника

Доказать: АВ + CD = ВС + AD.

Доказательство. По свойству касательных, проведённых к окружности из одной точки: АЕ = АР; BE = BF, СК = CF, DK = DP. Сложив почленно эти равенства, получим: АЕ + BE + СК + DK = АР + BF + CF + DP, то есть АВ + CD = ВС + AD.

В каждый ли четырёхугольник можно вписать окружность? В отличие от треугольника, не в каждый четырёхугольник можно вписать окружность. Приведём признак описанного четырёхугольника без доказательства.

Теорема (признак описанного четырёхугольника). Если в четырёхугольнике суммы противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Чтобы доказать, что четырёхугольник MNKP (рис. 227) — вписанный, покажите, что: либо ے M + ے K = 180°, либо ے N + ے P= 180°. Чтобы доказать, что четырёхугольник ABCD (рис. 227) — описанный, покажите, что: AB + CD = AD + BC.

1. Кроме окружностей, вписанной и описанной около четырёхугольника, существуют ещё и вневписанные окружности.

Как найти сумму внешних углов четырехугольника

Проведём в произвольном четырёхугольнике ABCD биссектрисы внешних углов при вершинах А, В, С и D [рис. 228). Точки их пересечения Как найти сумму внешних углов четырехугольникацентры четырёх вневписанных окружностей. Каждая из них касается одной стороны четырёхугольника и продолжении двух других его сторон. Вневписанные окружности имеют следующее свойство: их центры являются вершинами четырёхугольника Как найти сумму внешних углов четырехугольникавписанного в окружность. Действительно,

Как найти сумму внешних углов четырехугольника

Следовательно, четырёхугольник Как найти сумму внешних углов четырехугольника— вписанный в окружность.

2. Древнегреческие учёные открыли, кроме уже известных вам, другие интересные свойства вписанных и описанных четырёхугольников. Например.

Теорема Птолемея (II в.). Произведение диагоналей вписанного четырёхугольника равно сумме произведений его противоположных сторон.

Задача Архимеда (III в. до н. э.). Если диагонали вписанного четырёхугольника перпендикулярны, то сумма квадратов четырёх отрезков, на которые делятся диагонали точкой пересечения, равна квадрату диаметра описанной окружности. Позднее (IX — XIII в.) арабские учёные дополнили сведения о вписанных и описанных четырёхугольниках и способах исследования их свойств. Так, одарённый геометр Гасан ибн-Гайтем (умер в 1038 г.) предложил, способ, позволяющий установить, используя лишь циркуль, является ли данный четырёхугольник вписанным. Пусть дан четырёхугольник ABCD(рис. 229).

Как найти сумму внешних углов четырехугольника

Продолжим сторону AD за точку D. Проведём дуги равных окружностей с центрами в точках В и D. Если KL = МО, то четырёхугольник ABCD — вписанный, так как ے ABC + ے ADC = 180° (докажите это). В иных случаях четырёхугольник не является вписанным.

4 | 3. При решении задач иногда рассматриваются окружности, не заданные в условии. На рисунке к задаче сначала находим четырёхугольник, около которого можно описать окружность либо в который можно вписать окружность, а потом используем свойства хорд, диаметров, вписанных углов, углов с вершиной внутри окружности и т. д.

Как найти сумму внешних углов четырехугольника

Пример №10

Из произвольной точки М катета ВС прямоугольного треугольника ABC проведён перпендикуляр MD к гипотенузе АВ (рис. 230). Докажем, что ے MAD= ے MCD.

Решение:

Около четырёхугольника ADMC можно описать окружность, так как ے ACM+ ے ADM= 180°.

Тогда ے MAD= ے MCD— вписанные углы, опирающиеся на одну дугу MD.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Площади фигур в геометрии
  • Площади поверхностей геометрических тел
  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

🎦 Видео

ОГЭ Задание 25 Сумма внешних углов выпуклого многоугольникаСкачать

ОГЭ Задание 25 Сумма внешних углов выпуклого многоугольника

7 класс, 31 урок, Теорема о сумме углов треугольникаСкачать

7 класс, 31 урок, Теорема о сумме углов треугольника

Уроки геометрии. Чему равна сумма углов четырехугольника?Скачать

Уроки геометрии. Чему равна сумма углов четырехугольника?

8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Сумма внешних углов выпуклого многоугольника 1е доказательствоСкачать

Сумма внешних углов выпуклого многоугольника 1е доказательство

Геометрия за 6 минут — Сумма углов треугольника и Внешний УголСкачать

Геометрия за 6 минут — Сумма углов треугольника и Внешний Угол

8 класс, 2 урок, Выпуклый многоугольникСкачать

8 класс, 2 урок, Выпуклый многоугольник

Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

Сумма внешних углов выпуклого многоугольникаСкачать

Сумма внешних углов выпуклого многоугольника

Теперь ты будешь находить углы за секунды. Как найти внешний угол треугольника? #математика #углыСкачать

Теперь ты будешь находить углы за секунды. Как найти внешний угол треугольника? #математика #углы

Многоугольники. Математика 8 класс | TutorOnlineСкачать

Многоугольники. Математика 8 класс | TutorOnline

Четырехугольник, его элементы. Сумма углов четырехугольника (8 класс. Геометрия)Скачать

Четырехугольник, его элементы. Сумма углов четырехугольника (8 класс. Геометрия)

Теория. Геометрия. Сумма внешних углов многоугольника (8-9 класс)Скачать

Теория. Геометрия. Сумма внешних углов многоугольника (8-9 класс)

Сумма внешних угловСкачать

Сумма внешних углов

Внешний угол выпуклого многоугольника. Сумма внешних углов выпуклого многоугольникаСкачать

Внешний угол выпуклого многоугольника. Сумма внешних углов выпуклого многоугольника
Поделиться или сохранить к себе: