1. Формула длины основания равнобедренной трапеции через среднюю линию
a — нижнее основание
b — верхнее основание
m — средняя линия
Формулы длины основания :

2. Формулы длины сторон через высоту и угол при нижнем основании
a — нижнее основание
b — верхнее основание
c — равные боковые стороны
α — угол при основании трапеции
h — высота трапеции
Формулы всех четырех сторон трапеции :

 
 
 
 
3. Формула длины сторон трапеции через диагонали, высоту и угол между диагоналями
a — нижнее основание
b — верхнее основание
c — равные боковые стороны
d — диагонали
α , β — углы между диагоналями
h — высота трапеции
Формулы длины сторон трапеции:

 
справедливо для данной ситуации:
4. Формулы длины сторон равнобедренной трапеции через площадь
a — нижнее основание
b — верхнее основание
c — равные боковые стороны
α , β — углы при основаниях
m — средняя линия
h — средняя линия
Формулы длины сторон равнобедренной трапеции через площадь :
- Равнобедренная трапеция. Формулы, признаки и свойства равнобедренной трапеции
- Признаки равнобедренной трапеции
- Основные свойства равнобедренной трапеции
- Стороны равнобедренной трапеции
- Формулы длин сторон равнобедренной трапеции:
- Средняя линия равнобедренной трапеции
- Формулы длины средней линии равнобедренной трапеции:
- Высота равнобедренной трапеции
- Формулы определения длины высоты равнобедренной трапеции:
- Диагонали равнобедренной трапеции
- Формулы длины диагоналей равнобедренной трапеции:
- Площадь равнобедренной трапеции
- Формулы площади равнобедренной трапеции:
- Окружность описанная вокруг трапеции
- Формула определения радиуса описанной вокруг трапеции окружности:
- Вписанная в равнобедренную трапецию окружность
- 💥 Видео
Видео:Геометрия Задача № 26 Найти радиус вписанной в трапецию окружностиСкачать

Равнобедренная трапеция. Формулы, признаки и свойства равнобедренной трапеции
|  | 
| Рис.1 | 
Видео:Трапеция, вписанная в окружностьСкачать

Признаки равнобедренной трапеции
∠ABC = ∠BCD и ∠BAD = ∠ADC
∠ABD = ∠ACD, ∠DBC = ∠ACB, ∠CAD = ∠ADB, ∠BAC = ∠BDC
∠ABC + ∠ADC = 180° и ∠BAD + ∠BCD = 180°
Видео:Радиус описанной окружности трапецииСкачать

Основные свойства равнобедренной трапеции
∠ABC + ∠BAD = 180° и ∠ADC + ∠BCD = 180°
AC 2 + BD 2 = AB 2 + CD 2 + 2BC · AD
9. Высота (CP), опущенная из вершины (C) на большее основание (AD), делит его на большой отрезок (AP), который равен полусумме оснований и меньший (PD) — равен полуразности оснований:
| AP = | BC + AD | 
| 2 | 
| PD = | AD — BC | 
| 2 | 
Видео:Задача про трапецию, описанную около окружностиСкачать

Стороны равнобедренной трапеции
Формулы длин сторон равнобедренной трапеции:
a = b + 2 h ctg α = b + 2 c cos α
b = a — 2 h ctg α = a — 2 c cos α
| c = | h | = | a — b | 
| sin α | 2 cos α | 
2. Формула длины сторон трапеции через диагонали и другие стороны:
| a = | d 1 2 — c 2 | b = | d 1 2 — c 2 | c = √ d 1 2 — ab | 
| b | a | 
3. Формулы длины основ через площадь, высоту и другую основу:
| a = | 2S | — b b = | 2S | — a | 
| h | h | 
4. Формулы длины боковой стороны через площадь, среднюю линию и угол при основе:
| с = | S | 
| m sin α | 
5. Формулы длины боковой стороны через площадь, основания и угол при основе:
| с = | 2S | 
| ( a + b ) sin α | 
Видео:Трапеция. Практическая часть - решение задачи. 8 класс.Скачать

Средняя линия равнобедренной трапеции
Формулы длины средней линии равнобедренной трапеции:
m = a — h ctg α = b + h ctg α = a — √ c 2 — h 2 = b + √ c 2 — h 2
2. Формула средней линии трапеции через площадь и сторону:
| m = | S | 
| c sin α | 
Видео:Основания равнобедренной трапеции равны 72 и 30. Центр окружности, описанной около трапеции... (ЕГЭ)Скачать

Высота равнобедренной трапеции
Формулы определения длины высоты равнобедренной трапеции:
1. Формула высоты через стороны:
| h = | 1 | √ 4 c 2 — ( a — b ) 2 | 
| 2 | 
2. Формула высоты через стороны и угол прилегающий к основе:
| h = | a — b | tg β | = c sin β | 
| 2 | 
Видео:Малоизвестные свойства равнобедренной трапеции. Разбор задачи 17 ЕГЭ профиль.Скачать

Диагонали равнобедренной трапеции
Формулы длины диагоналей равнобедренной трапеции:
d 1 = √ a 2 + c 2 — 2 ac cos α
d 1 = √ b 2 + c 2 — 2 bc cos β
4. Формула длины диагонали через высоту и основания:
| d 1 = | 1 | √ 4 h 2 + ( a + b ) 2 | 
| 2 | 
Видео:Как найти стороны равнобокой трапеции, описанной около трёх попарно касающихся равных окружностей?Скачать

Площадь равнобедренной трапеции
Формулы площади равнобедренной трапеции:
1. Формула площади через стороны:
| S = | a + b | √ 4 c 2 — ( a — b ) 2 | 
| 4 | 
2. Формула площади через стороны и угол:
S = ( b + c cos α ) c sin α = ( a — c cos α ) c sin α
3. Формула площади через радиус вписанной окружности и угол между основой и боковой стороной:
| S = | 4 r 2 | = | 4 r 2 | 
| sin α | sin β | 
4. Формула площади через основания и угол между основой и боковой стороной:
| S = | ab | = | ab | 
| sin α | sin β | 
5. Формула площади ранобедренной трапеции в которую можно вписать окружность:
S = ( a + b ) · r = √ ab ·c = √ ab ·m
6. Формула площади через диагонали и угол между ними:
| S = | d 1 2 | · sin γ | = | d 1 2 | · sin δ | 
| 2 | 2 | 
7. Формула площади через среднюю линию, боковую сторону и угол при основании:
S = mc sin α = mc sin β
8. Формула площади через основания и высоту:
| S = | a + b | · h | 
| 2 | 
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Окружность описанная вокруг трапеции
Формула определения радиуса описанной вокруг трапеции окружности:
1. Формула радиуса через стороны и диагональ:
| R = | a·c·d 1 | 
| 4√ p ( p — a )( p — c )( p — d 1) | 
где
| p = | a + c + d 1 | 
| 2 | 
a — большее основание
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool. 
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Видео:Окружность, вписанная в трапециюСкачать

Вписанная в равнобедренную трапецию окружность
Какими свойствами обладает вписанная в равнобедренную трапецию окружность?
1. В трапецию можно вписать окружность тогда и только тогда, когда суммы длин её противоположных сторон равны.

И обратно, если для трапеции ABCD верно равенство AD+BC=AB+CD, то в неё можно вписать окружность.
Таким образом, если трапеция ABCD — равнобедренная, AD||BC, то её боковые стороны равны полусумме оснований:
2. Отсюда, по свойству средней линии трапеции, боковые стороны равнобедренной трапеции, в которую можно вписать окружность, равны её средней линии.

3. Высота равнобедренной трапеции, в которую можно вписать окружность, равна среднему пропорциональному (среднему геометрическому) между её основаниями.

Из прямоугольного треугольника ABF по теореме Пифагора
 
4. Так как радиус вписанной в трапецию окружности равен половине высоты трапеции, то для равнобедренной трапеции верно равенство
5. В равнобедренной трапеции точки касания делят стороны на две группы равных отрезков.
6. Центр вписанной в равнобедренную трапецию окружности — точка пересечения её биссектрис.

💥 Видео
Трапеция в окружности. Задача Шаталова.Скачать

Геометрия Равнобокая трапеция вписана в окружность, центр которой принадлежит одному из основанияСкачать

Задание 26_Равнобедренная трапеция. Вписанная окружность.Скачать

Трапеция и вписанная окружностьСкачать

8 класс, 6 урок, ТрапецияСкачать

Вписанная и описанная окружность - от bezbotvyСкачать

Задание 26 Равнобедренная трапеция вписанная в окружностьСкачать

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Всегда ли трапеция вписанная в окружность РАВНОБЕДРЕННАЯ? Задача. ЕГЭ, ОГЭ.Скачать




























