В данной публикации мы рассмотрим, как найти сумму и разность векторов, приведем геометрическую интерпретацию, а также формулы, свойства и примеры этих действий.
- Сумма векторов
- Формула сложения векторов
- Свойства сложения векторов
- Разность векторов
- Формула вычитания векторов
- Примеры задач
- Определение разности двух векторов
- Определения векторной математики
- Аналитический метод
- Вычисление разности графически
- Решение задач
- Вычитание векторов. Как найти разность векторов
- Откладывание вектора от данной точки
- Вычитание векторов. Правило первое
- Готовые работы на аналогичную тему
- Вычитание векторов. Правило второе
- Пример задачи на понятие разности векторов
- 🌟 Видео
Видео:8 класс, 45 урок, Сумма нескольких векторовСкачать
Сумма векторов
Сложение векторов выполняется по правилу треугольника.
Геометрическая интерпретация:
Суммой a и b является вектор c , начало которого совпадает с началом a , а конец – с концом b . При этом конец вектора a должен совпадать с началом вектора b .
Для сложения векторов также используется правило параллелограмма.
Два неколлинеарных вектора a и b можно привести к общему началу, и в этом случае их суммой является вектор c , совпадающий с диагональю параллелограмма и берущий начало в той же точке, что и исходные векторы.
Формула сложения векторов
Элементы вектора c равняются попарной сумме соответствующих элементов a и b .
<table data-id="250" data-view-id="250_55602" data-title="Формулы сложения векторов" data-currency-format="$1,000.00" data-percent-format="10.00%" data-date-format="DD.MM.YYYY" data-time-format="HH:mm" data-features="["after_table_loaded_script"]" data-search-value="" data-lightbox-img="" data-head-rows-count="1" data-pagination-length="50,100,All" data-auto-index="off" data-searching-settings="» data-lang=»default» data-override=»» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>
<td data-cell-id="B1" data-x="1" data-y="1" data-db-index="1" data-cell-type="text" data-original-value=" a + b = <ax + bx; ay + by> » data-order=» a + b = <ax + bx; ay + by> » style=»min-width:55.0847%; width:55.0847%;»> a + b = <ax + bx; ay + by>
<td data-cell-id="B2" data-x="1" data-y="2" data-db-index="2" data-cell-type="text" data-original-value=" a + b = <ax + bx; ay + by; az + bz> » data-order=» a + b = <ax + bx; ay + by; az + bz> «> a + b = <ax + bx; ay + by; az + bz>
<td data-cell-id="B3" data-x="1" data-y="3" data-db-index="3" data-cell-type="text" data-original-value=" a + b = <a1 + b1; a2 + b2; . an + bn> » data-order=» a + b = <a1 + b1; a2 + b2; . an + bn> «> a + b = <a1 + b1; a2 + b2; . an + bn>
Свойства сложения векторов
1. Коммутативность: a + b = b + a
2. Ассоциативность: ( a + b ) + c = a + ( b + c )
3. Прибавление к нулю: a + 0 = a
4. Сумма противоположных векторов: a + (- a ) = 0
Примечание: Вектор – a коллинеарен и равен по длине a , но имеет противоположное направление, из-за чего называется противоположным.
Видео:ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэСкачать
Разность векторов
Для вычитания векторов также применяется правило треугольника.
Если из вектора a вычесть b , то получится c , причем должно соблюдаться условие:
Формула вычитания векторов
Элементы вектора c равны попарной разности соответствующих элементов a и b .
<table data-id="251" data-view-id="251_83403" data-title="Формулы вычитания векторов" data-currency-format="$1,000.00" data-percent-format="10.00%" data-date-format="DD.MM.YYYY" data-time-format="HH:mm" data-features="["after_table_loaded_script"]" data-search-value="" data-lightbox-img="" data-head-rows-count="1" data-pagination-length="50,100,All" data-auto-index="off" data-searching-settings="» data-lang=»default» data-override=»» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>
<td data-cell-id="B1" data-x="1" data-y="1" data-db-index="1" data-cell-type="text" data-original-value=" a — b = <ax — bx; ay — by> » data-order=» a — b = <ax — bx; ay — by> » style=»min-width:55.0847%; width:55.0847%;»> a — b = <ax — bx; ay — by>
<td data-cell-id="B2" data-x="1" data-y="2" data-db-index="2" data-cell-type="text" data-original-value=" a — b = <ax — bx; ay — by; az — bz> » data-order=» a — b = <ax — bx; ay — by; az — bz> «> a — b = <ax — bx; ay — by; az — bz>
<td data-cell-id="B3" data-x="1" data-y="3" data-db-index="3" data-cell-type="text" data-original-value=" a — b = <a1 — b1; a2 — b2; . an — bn> » data-order=» a — b = <a1 — b1; a2 — b2; . an — bn> «> a — b = <a1 — b1; a2 — b2; . an — bn>
Видео:Вычитание векторов. 9 класс.Скачать
Примеры задач
Задание 1
Вычислим сумму векторов и .
Задание 2
Найдем разность векторов и .
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Определение разности двух векторов
В математике и физике студентам и школьникам зачастую попадаются задачи на векторные величины и на выполнение различных операций над ними. В чём же отличие векторных величин от привычных нам скалярных, единственная характеристика которых — это численное значение? В том, что они обладают направлением.
[block >
Видео:Построить разность векторов.Скачать
Определения векторной математики
Введём главные определения, используемые при выполнении линейных операций.
- Вектором называют направленный (имеющий точку начала и точку конца) отрезок.
- Длина (модуль) — это длина направленного отрезка.
- Коллинеарными называют такие два вектора, которые либо параллельны одной и той же прямой, либо одновременно лежат на ней.
- Противоположно направленными векторами называют коллинеарные и при этом направленные в разные стороны. Если же их направление совпадает, то они являются сонаправленными.
- Вектора являются равными, когда они сонаправлены и одинаковы по модулю.
- Суммой двух векторов a и b является такой вектор c, начало которого совпадает с началом первого, а конец — с концом второго при условии, что b начинается в той же точке, в которой заканчивается a.
- Разностью векторов a и b называют сумму a и (—b), где (—b) — противоположно направленный к вектору b. Также определение разности двух векторов может быть дано следующее: разностью c пары векторов a и b называют такой c, который при сложении с вычитаемым b образует уменьшаемое a.
Видео:Геометрия 9 класс (Урок№3 - Вычитание векторов)Скачать
Аналитический метод
Аналитический способ подразумевает получение координат разности по формуле без построения. Возможно выполнить вычисление для плоского (двухмерного), объёмного (трёхмерного) или же n-мерного пространства.
Для двухмерного пространства и векторных величин a <a₁; a₂> и b <b₁; b₂> расчёты будут иметь следующий вид: c <c₁; c₂> = <a₁ — b₁; a₂ — b₂>.
В случае с добавлением третьей координаты расчёт будет проводиться аналогично, и для a <a₁; a₂; a₃> и b <b₁; b₂; b₃> координаты разности будут также получены попарным вычитанием: c <c₁; c₂; c₃> = <a₁ — b₁; a₂ — b₂; a₃ — b₃>.
Видео:10 класс, 41 урок, Сумма нескольких векторовСкачать
Вычисление разности графически
Для того чтобы построить разность графическим способом, следует воспользоваться правилом треугольника. Для этого необходимо выполнить следующую последовательность действий:
- По заданным координатам построить векторы, для которых нужно найти разность.
- Совместить их концы (т. е. построить два направленных отрезка, равных заданным, которые будут оканчиваться в одной и той же точке).
- Соединить начала обоих направленных отрезков и указать направление; результирующий будет начинаться в той же точке, где начинался вектор, являющийся уменьшаемым, и заканчиваться в точке начала вычитаемого.
[block > Результат операции вычитания показан на рисунке ниже.
Также существует метод построения разности, незначительно отличающийся от предыдущего. Его суть заключается в применении теоремы о разности векторов, которая формулируется следующим образом: для того чтобы найти разность пары направленных отрезков, достаточно найти сумму первого из них с отрезком, противоположно направленным ко второму. Алгоритм построения будет иметь следующий вид:
- Построить исходные направленные отрезки.
- Тот, что является вычитаемым, необходимо отразить, т. е. построить противоположно направленный и равный ему отрезок; затем совместить его начало с уменьшаемым.
- Построить сумму: соединить начало первого отрезка с концом второго.
Результат такого решения изображён на рисунке:
Видео:РАЗНОСТЬ ВЕКТОРОВ геометрия 9 АтанасянСкачать
Решение задач
Для закрепления навыка разберём несколько заданий, в которых требуется рассчитать разность аналитически или графически.
Задача 1. На плоскости заданы 4 точки: A (1; —3), B (0; 4), C (5; 8), D (—3; 2). Определить координаты вектора q = AB — CD, а также рассчитать его длину.
Решение. Вначале следует найти координаты AB и CD. Для этого из координат конечных точек вычтем координаты начальных. Для AB началом является A (1; —3), а концом — B (0; 4). Рассчитаем координаты направленного отрезка:
Аналогичный расчёт выполняется для CD:
Теперь, зная координаты, можно найти разность векторов. Формула для аналитического решения плоских задач была рассмотрена ранее: для c = a — b координаты имеют вид <c₁; c₂> = <a₁ — b₁; a₂ — b₂>. Для конкретного случая можно записать:
Чтобы найти длину q, воспользуемся формулой | q | = √(q₁² + q₂²) = √((— 9)² + (— 1)²) = √(81 + 1) = √82 ≈ 9,06.
[block > Задача 2. На рисунке изображены векторы m, n и p.
Необходимо построить для них разности: p — n; m — n; m — n — p. Выяснить, какая из них обладает наименьшим модулем.
Решение. В задаче требуется выполнить три построения. Рассмотрим каждую часть задания более подробно.
Часть 1. Для того чтобы изобразить p — n, воспользуемся правилом треугольника. Для этого при помощи параллельного переноса соединим отрезки так, чтобы совпала их конечная точка. Теперь соединим начальные точки и определим направление. В нашем случае вектор разности начинается там же, где и вычитаемый n.
Часть 2. Изобразим m — n. Теперь для решения воспользуемся теоремой о разности векторов. Для этого следует построить вектор, противоположный n, а затем найти его сумму с m. Полученный результат будет выглядеть так:
[block > Часть 3. Для того чтобы найти разность m — n — p, следует разбить выражение на два действия. Поскольку в векторной алгебре действуют законы аналогичные законам арифметики, то возможны варианты:
- m — (n + p): в этом случае вначале строится сумма n + p, которая затем вычитается из m;
- (m — n) — p: здесь сначала нужно найти m — n, а затем отнять от этой разности p;
- (m — p) — n: первым действием определяется m — p, после чего из полученного результата нужно вычесть n.
Так как в предыдущей части задачи мы уже нашли разность m — n, нам остаётся лишь вычесть из неё p. Построим разность двух данных векторов при помощи теоремы о разности. Ответ показан на изображении ниже (красным цветом обозначен промежуточный результат, а зелёным — окончательный).
Остаётся определить, модуль какого из отрезков является наименьшим. Вспомним, что понятия длины и модуля в векторной математике являются идентичными. Оценим визуально длины p — n, m — n и m — n — p. Очевидно, что самым коротким и обладающим наименьшим модулем является ответ в последней части задачи, а именно m — n — p.
[block > [block >
Видео:Сложение нескольких векторов. Правило многоугольникаСкачать
Вычитание векторов. Как найти разность векторов
Вы будете перенаправлены на Автор24
Видео:8 класс, 43 урок, Сумма двух векторовСкачать
Откладывание вектора от данной точки
Для того, чтобы ввести разность векторов, сначала необходимо разобраться в таком понятии, как откладывание вектора от данной точки.
Введем следующую теорему:
От любой точки $K$ можно отложить вектор $overrightarrow$ и притом только один.
Доказательство.
Существование: Здесь нужно рассмотреть два случая:
В этом случае, очевидно, что искомый вектор — вектор $overrightarrow$.
Рисунок 2. Иллюстрация теоремы 1
Единственность: единственность сразу следует из построения, проведенного в пункте «существование».
Теорема доказана.
Видео:10 класс, 40 урок, Сложение и вычитание векторовСкачать
Вычитание векторов. Правило первое
Пусть нам даны векторы $overrightarrow$ и $overrightarrow$.
Готовые работы на аналогичную тему
Построение разности двух векторов рассмотрим с помощью задачи.
Решение.
Рисунок 3. Разность двух векторов
По правилу треугольника для построения суммы двух векторов видим, что
Из определения 2, получаем, что
Видео:8 класс, 46 урок, Вычитание векторовСкачать
Вычитание векторов. Правило второе
Вспомним следующее необходимое нам понятие.
Вектор $overrightarrow$ называется произвольным для вектора $overrightarrow$, если эти векторы противоположно направлены и имеют равную длину.
Для того чтобы ввести второе правило для разности двух векторов, нам необходимо в начале ввести и доказать следующую теорему.
Доказательство.
По определению 2, имеем
Прибавим к обеим частям вектор $left(-overrightarrowright)$, получим
Так как векторы $overrightarrow$ и $left(-overrightarrowright)$ противоположны, то $overrightarrow+left(-overrightarrowright)=overrightarrow$. Имеем
Теорема доказана.
Видео:Сложение векторов. 9 класс.Скачать
Пример задачи на понятие разности векторов
Рисунок 4. Параллелограмм
Решение.
а) Произведем сложение по правилу треугольника, получим
Из первого правила разности двух векторов, получаем
б) Так как $overrightarrow=overrightarrow$, получим
По теореме 2, имеем
Используя правило треугольника, окончательно имеем
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 01 04 2022
🌟 Видео
Сложение векторов. Правило параллелограмма. 9 класс.Скачать
СУММА ВЕКТОРОВ правило треугольникаСкачать
сложение ВЕКТОРОВ вычитание ВЕКТОРОВ 9 класс геометрия АтанасянСкачать
Сумма и разность векторов. Урок 2. Геометрия 9 классСкачать
Вычитание векторов. Практическая часть. 9 класс.Скачать
РАЗБИРАЕМ ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ II 😊#shorts #математика #егэ #задачи #егэ2022 #огэ2022Скачать
Сложение и вычитание векторов. Практическая часть. 11 класс.Скачать