Как найти площадь треугольника интегралом

Видео:Площадь треугольника с помощью интегралаСкачать

Площадь треугольника с помощью интеграла

1.8. Как вычислить площадь с помощью определённого интеграла?

Задачка это школьная, но, несмотря на то, почти 100% встретится в вашем курсе высшей математики. Поэтому со всей серьёзностью отнесёмся ко ВСЕМ примерам, и первое, что нужно сделать – это ознакомиться с Приложением Графики функций, чтобы освежить в памяти технику построения элементарных графиков. …Есть? Отлично! Типовая формулировка задания звучит так:

Пример 10
Вычислить площадь фигуры, ограниченной линиями Как найти площадь треугольника интегралом.

И первый важнейший этап решения состоит как раз в построении чертежа. При этом я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потомпараболы, гиперболы, графики других функций.

В нашей задаче: прямая Как найти площадь треугольника интеграломопределяет ось Как найти площадь треугольника интегралом, прямые Как найти площадь треугольника интеграломпараллельны оси Как найти площадь треугольника интеграломи парабола Как найти площадь треугольника интеграломсимметрична относительно оси Как найти площадь треугольника интегралом, для неё находим несколько опорных точек:
Как найти площадь треугольника интегралом

Искомую фигуру желательно штриховать:
Как найти площадь треугольника интегралом

Второй этап состоит в том, чтобы правильно составить и правильно вычислить определённый интеграл. На отрезке Как найти площадь треугольника интеграломграфик функции Как найти площадь треугольника интеграломрасположен над осью Как найти площадь треугольника интегралом, поэтому искомая площадь:
Как найти площадь треугольника интегралом

Ответ: Как найти площадь треугольника интегралом

После того, как задание выполнено, полезно взглянуть на чертёж
и прикинуть, реалистичный ли получился ответ.

И мы «на глазок» подсчитываем количество заштрихованных клеточек – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получилось, скажем, 20 квадратных единиц, то, очевидно, где-то допущена ошибка – в построенную фигуру 20 клеток явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 11
Вычислить площадь фигуры, ограниченной линиями Как найти площадь треугольника интеграломи осью Как найти площадь треугольника интегралом

Быстренько разминаемся (обязательно!) и рассматриваем «зеркальную» ситуацию – когда криволинейная трапеция расположена под осью Как найти площадь треугольника интегралом:

Пример 12
Вычислить площадь фигуры, ограниченной линиями Как найти площадь треугольника интегралом, Как найти площадь треугольника интеграломи координатными осями.

Решение: найдём несколько опорных точек для построения экспоненты:
Как найти площадь треугольника интегралом
и выполним чертёж, получая фигуру площадью около двух клеток:
Как найти площадь треугольника интегралом
Если криволинейная трапеция расположена не выше оси Как найти площадь треугольника интегралом, то её площадь можно найти по формуле: Как найти площадь треугольника интегралом.
В данном случае: Как найти площадь треугольника интегралом

Ответ: Как найти площадь треугольника интегралом– ну что же, очень и очень похоже на правду.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому от простейших школьных задачек мы переходим к более содержательным примерам:

Пример 13
Найти площадь плоской фигуры, ограниченной линиями Как найти площадь треугольника интегралом, Как найти площадь треугольника интегралом.

Решение: сначала нужно выполнить чертеж, при этом нас особо интересуют точки пересечения параболы Как найти площадь треугольника интеграломи прямой Как найти площадь треугольника интегралом, поскольку здесь будут находиться пределы интегрирования. Найти их можно двумя способами. Первый способ – аналитический. Составим и решим уравнение:
Как найти площадь треугольника интегралом
таким образом:
Как найти площадь треугольника интегралом

Достоинство аналитического способа состоит в его точности, а недостаток – в длительности (и в этом примере нам ещё повезло). Поэтому во многих задачах бывает выгоднее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой».

С прямой Как найти площадь треугольника интеграломвсё понятно, а вот для построения параболы удобно найти её вершину, для этого возьмём производную и приравняем её к нулю:
Как найти площадь треугольника интегралом– именно в этой точке и будет находиться вершина. И, в силу симметрии параболы, остальные опорные точки найдём по принципу «влево-вправо»:
Как найти площадь треугольника интегралом

Выполним чертеж:
Как найти площадь треугольника интегралом

А теперь рабочая формула: если на отрезке Как найти площадь треугольника интеграломнекоторая непрерывная функция Как найти площадь треугольника интеграломбольше либо равна непрерывной функции Как найти площадь треугольника интегралом, то площадь фигуры, ограниченной графиками этих функций и отрезками прямых Как найти площадь треугольника интегралом, можно найти по формуле:
Как найти площадь треугольника интегралом

Здесь уже не надо думать, где расположена фигура – над осью или под осью, а, грубо говоря, важно, какой из двух графиков ВЫШЕ.

В нашем примере очевидно, что на отрезке Как найти площадь треугольника интеграломпарабола располагается выше прямой, а поэтому из Как найти площадь треугольника интеграломнужно вычесть Как найти площадь треугольника интегралом

Завершение решения может выглядеть так:

На отрезке Как найти площадь треугольника интегралом: Как найти площадь треугольника интегралом, по соответствующей формуле:
Как найти площадь треугольника интегралом

Ответ: Как найти площадь треугольника интегралом

Следует отметить, что простые формулы, рассмотренные в начале параграфа – это частные случаи формулы Как найти площадь треугольника интегралом. Поскольку ось Как найти площадь треугольника интеграломзадаётся уравнением Как найти площадь треугольника интегралом, то одна из функций будет нулевой, и в зависимости от того, выше или ниже лежит криволинейная трапеция, мы получим формулу Как найти площадь треугольника интеграломлибо Как найти площадь треугольника интегралом

А сейчас пара типовых задач для самостоятельного решения

Пример 14
Найти площадь фигур, ограниченных линиями:

а) Как найти площадь треугольника интегралом, Как найти площадь треугольника интегралом.

б) Как найти площадь треугольника интегралом, Как найти площадь треугольника интегралом, Как найти площадь треугольника интегралом

Решение с чертежами и краткими комментариями в конце книги

В ходе решения рассматриваемой задачи иногда случается забавный казус. Чертеж выполнен правильно, интеграл решён правильно, но по невнимательности… найдена площадь не той фигуры, именно так несколько раз ошибался ваш покорный слуга. Вот реальный случай из жизни:

Пример 15
Вычислить площадь фигуры, ограниченной линиями Как найти площадь треугольника интегралом

Решение: выполним бесхитростный чертёж,
Как найти площадь треугольника интегралом
хитрость которого состоит в том, что искомая площадь заштрихована зелёным цветом (внимательно смотрИте на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована серым цветом! Особое коварство состоит в том, что прямую Как найти площадь треугольника интеграломможно недочертить до оси Как найти площадь треугольника интегралом, и тогда мы вовсе не увидим нужную фигуру.

Этот пример ещё и полезен тем, что в нём площадь фигуры считается с помощью двух определённых интегралов. Действительно:

1) на отрезке Как найти площадь треугольника интеграломнад осью Как найти площадь треугольника интеграломрасположен график прямой Как найти площадь треугольника интегралом;
2) на отрезке Как найти площадь треугольника интеграломнад осью Как найти площадь треугольника интеграломрасположен график гиперболы Как найти площадь треугольника интегралом.

Совершенно понятно, что площади можно (и нужно) сложить:
Как найти площадь треугольника интегралом

Ответ: Как найти площадь треугольника интегралом

И познавательный пример для самостоятельного решения:

Пример 16
Вычислить площадь фигуры, ограниченной линиями Как найти площадь треугольника интегралом, Как найти площадь треугольника интегралом, Как найти площадь треугольника интеграломи координатными осями.

Итак, систематизируем важные моменты этой задачи:

На первом шаге ВНИМАТЕЛЬНО изучаем условие – КАКИЕ функции нам даны? Ошибки бывают даже здесь, в частности, арккотангенс Как найти площадь треугольника интеграломзачастую принимают за арктангенс. Это, кстати, относится и к другим заданием, где встречается арккотангенс.

Далее следует ПРАВИЛЬНО выполнить чертёж. Сначала лучше построить прямые (если они есть), затем графики других функций (если они есть J). Последние во многих случаях выгоднее строить поточечно – найти несколько опорных точек и аккуратно соединить их линией.

Но здесь могут подстерегать следующие трудности. Во-первых, из чертежа не всегда понятны пределы интегрирования – так бывает, когда они дробные. На mathprofi.ru в соответствующей статье я рассмотрел пример с параболой Как найти площадь треугольника интеграломи прямой Как найти площадь треугольника интегралом, где из чертежа не понятна одна из точек их пересечения. В таких случаях следует использовать аналитический метод, составляем уравнение:
Как найти площадь треугольника интегралом
и находим его корни:
Как найти площадь треугольника интеграломнижний предел интегрирования, Как найти площадь треугольника интеграломверхний предел.

Во-вторых, не всегда понятен «внешний вид» линии, и функция Как найти площадь треугольника интегралом(Пример 16) – яркий тому пример. Я и сам «с ходу» не представляю, как выглядит график этой функции. Здесь можно воспользоваться специализированными программами или онлайн сервисами (а-ля «построить график онлайн»), а в экстремальной ситуации найти побольше опорных точек (штук 10-15), чтобы поточнее провести «неизвестную» кривую.
Ну и, конечно, я призываю вас повышать свои знания и навыки в графиках, в частности, приведу прямую ссылку на особо полезную статью:
http://mathprofi.ru/kak_postroit_grafik_funkcii_s_pomoshyu_preobrazovanii.html

После того, как чертёж построен, анализируем полученную фигуру – ещё раз окидываем взглядом предложенные функции и перепроверяем, ТА ЛИ это фигура. Затем анализируем её форму и расположение, бывает, что площадь достаточно сложнА и тогда её следует разделить на две, а то и на три части.

Составляем определённый интеграл или несколько интегралов по формуле Как найти площадь треугольника интегралом, все основные вариации мы разобрали выше.

Решаем определённый интеграл (ы). При этом он может оказаться достаточно сложным, и тогда применяем поэтапный алгоритм: 1) находим первообразную и проверяем её дифференцированием, 2) используем формулу Ньютона-Лейбница.

Результат полезно проверить с помощью программного обеспечения / онлайн сервисов или просто «прикинуть» по чертежу по клеточкам. Но и то, и другое не всегда осуществимо, поэтому крайне внимательно относимся к каждому этапу решения!

Полную и свежую версию данного курса в pdf-формате ,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин

Видео:Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.Скачать

Математика без Ху!ни. Определенные интегралы, часть 3. Площадь фигуры.

Нахождение площади фигуры, ограниченной линиями y=f(x), x=g(y)

В предыдущем разделе, посвященном разбору геометрического смысла определенного интеграла, мы получили ряд формул для вычисления площади криволинейной трапеции:

S ( G ) = ∫ a b f ( x ) d x для непрерывной и неотрицательной функции y = f ( x ) на отрезке [ a ; b ] ,

S ( G ) = — ∫ a b f ( x ) d x для непрерывной и неположительной функции y = f ( x ) на отрезке [ a ; b ] .

Эти формулы применимы для решения относительно простых задач. На деле же нам чаще придется работать с более сложными фигурами. В связи с этим, данный раздел мы посвятим разбору алгоритмов вычисления площади фигур, которые ограничены функциями в явном виде, т.е. как y = f ( x ) или x = g ( y ) .

Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Пусть функции y = f 1 ( x ) и y = f 2 ( x ) определены и непрерывны на отрезке [ a ; b ] , причем f 1 ( x ) ≤ f 2 ( x ) для любого значения x из [ a ; b ] . Тогда формула для вычисления площади фигуры G , ограниченной линиями x = a , x = b , y = f 1 ( x ) и y = f 2 ( x ) будет иметь вид S ( G ) = ∫ a b f 2 ( x ) — f 1 ( x ) d x .

Похожая формула будет применима для площади фигуры, ограниченной линиями y = c , y = d , x = g 1 ( y ) и x = g 2 ( y ) : S ( G ) = ∫ c d ( g 2 ( y ) — g 1 ( y ) d y .

Разберем три случая, для которых формула будет справедлива.

Как найти площадь треугольника интегралом

В первом случае, учитывая свойство аддитивности площади, сумма площадей исходной фигуры G и криволинейной трапеции G 1 равна площади фигуры G 2 . Это значит, что

Как найти площадь треугольника интегралом

Поэтому, S ( G ) = S ( G 2 ) — S ( G 1 ) = ∫ a b f 2 ( x ) d x — ∫ a b f 1 ( x ) d x = ∫ a b ( f 2 ( x ) — f 1 ( x ) ) d x .

Выполнить последний переход мы можем с использованием третьего свойства определенного интеграла.

Во втором случае справедливо равенство: S ( G ) = S ( G 2 ) + S ( G 1 ) = ∫ a b f 2 ( x ) d x + — ∫ a b f 1 ( x ) d x = ∫ a b ( f 2 ( x ) — f 1 ( x ) ) d x

Графическая иллюстрация будет иметь вид:

Как найти площадь треугольника интегралом

Если обе функции неположительные, получаем: S ( G ) = S ( G 2 ) — S ( G 1 ) = — ∫ a b f 2 ( x ) d x — — ∫ a b f 1 ( x ) d x = ∫ a b ( f 2 ( x ) — f 1 ( x ) ) d x . Графическая иллюстрация будет иметь вид:

Как найти площадь треугольника интегралом

Перейдем к рассмотрению общего случая, когда y = f 1 ( x ) и y = f 2 ( x ) пересекают ось O x .

Точки пересечения мы обозначим как x i , i = 1 , 2 , . . . , n — 1 . Эти точки разбивают отрезок [ a ; b ] на n частей x i — 1 ; x i , i = 1 , 2 , . . . , n , где α = x 0 x 1 x 2 . . . x n — 1 x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S ( G i ) = ∫ x i — 1 x i ( f 2 ( x ) — f 1 ( x ) ) d x , i = 1 , 2 , . . . , n

S ( G ) = ∑ i = 1 n S ( G i ) = ∑ i = 1 n ∫ x i x i f 2 ( x ) — f 1 ( x ) ) d x = = ∫ x 0 x n ( f 2 ( x ) — f ( x ) ) d x = ∫ a b f 2 ( x ) — f 1 ( x ) d x

Последний переход мы можем осуществить с использованием пятого свойства определенного интеграла.

Проиллюстрируем на графике общий случай.

Как найти площадь треугольника интегралом

Формулу S ( G ) = ∫ a b f 2 ( x ) — f 1 ( x ) d x можно считать доказанной.

А теперь перейдем к разбору примеров вычисления площади фигур, которые ограничены линиями y = f ( x ) и x = g ( y ) .

Видео:Корнеев С.А. - Комбинаторика и сложность вычислений - 13. Вычисление биномиальных коэффициентовСкачать

Корнеев С.А. - Комбинаторика и сложность вычислений - 13. Вычисление биномиальных коэффициентов

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Рассмотрение любого из примеров мы будем начинать с построения графика. Изображение позволит нам представлять сложные фигуры как объединения более простых фигур. Если построение графиков и фигур на них вызывает у вас затруднения, можете изучить раздел об основных элементарных функциях, геометрическом преобразовании графиков функций, а также построению графиков во время исследования функции.

Необходимо определить площадь фигуры, которая ограничена параболой y = — x 2 + 6 x — 5 и прямыми линиями y = — 1 3 x — 1 2 , x = 1 , x = 4 .

Решение

Изобразим линии на графике в декартовой системе координат.

Как найти площадь треугольника интегралом

На отрезке [ 1 ; 4 ] график параболы y = — x 2 + 6 x — 5 расположен выше прямой y = — 1 3 x — 1 2 . В связи с этим, для получения ответа используем формулу, полученную ранее, а также способ вычисления определенного интеграла по формуле Ньютона-Лейбница:

S ( G ) = ∫ 1 4 — x 2 + 6 x — 5 — — 1 3 x — 1 2 d x = = ∫ 1 4 — x 2 + 19 3 x — 9 2 d x = — 1 3 x 3 + 19 6 x 2 — 9 2 x 1 4 = = — 1 3 · 4 3 + 19 6 · 4 2 — 9 2 · 4 — — 1 3 · 1 3 + 19 6 · 1 2 — 9 2 · 1 = = — 64 3 + 152 3 — 18 + 1 3 — 19 6 + 9 2 = 13

Ответ: S ( G ) = 13

Рассмотрим более сложный пример.

Необходимо вычислить площадь фигуры, которая ограничена линиями y = x + 2 , y = x , x = 7 .

Решение

В данном случае мы имеем только одну прямую линию, расположенную параллельно оси абсцисс. Это x = 7 . Это требует от нас найти второй предел интегрирования самостоятельно.

Построим график и нанесем на него линии, данные в условии задачи.

Как найти площадь треугольника интегралом

Имея график перед глазами, мы легко можем определить, что нижним пределом интегрирования будет абсцисса точки пересечения графика прямой y = x и полу параболы y = x + 2 . Для нахождения абсциссы используем равенства:

y = x + 2 О Д З : x ≥ — 2 x 2 = x + 2 2 x 2 — x — 2 = 0 D = ( — 1 ) 2 — 4 · 1 · ( — 2 ) = 9 x 1 = 1 + 9 2 = 2 ∈ О Д З x 2 = 1 — 9 2 = — 1 ∉ О Д З

Получается, что абсциссой точки пересечения является x = 2 .

Обращаем ваше внимание на тот факт, что в общем примере на чертеже линии y = x + 2 , y = x пересекаются в точке ( 2 ; 2 ) , поэтому такие подробные вычисления могут показаться излишними. Мы привели здесь такое подробное решение только потому, что в более сложных случаях решение может быть не таким очевидным. Это значит, что координаты пересечения линий лучше всегда вычислять аналитически.

На интервале [ 2 ; 7 ] график функции y = x расположен выше графика функции y = x + 2 . Применим формулу для вычисления площади:

S ( G ) = ∫ 2 7 ( x — x + 2 ) d x = x 2 2 — 2 3 · ( x + 2 ) 3 2 2 7 = = 7 2 2 — 2 3 · ( 7 + 2 ) 3 2 — 2 2 2 — 2 3 · 2 + 2 3 2 = = 49 2 — 18 — 2 + 16 3 = 59 6

Ответ: S ( G ) = 59 6

Необходимо вычислить площадь фигуры, которая ограничена графиками функций y = 1 x и y = — x 2 + 4 x — 2 .

Решение

Нанесем линии на график.

Как найти площадь треугольника интегралом

Определимся с пределами интегрирования. Для этого определим координаты точек пересечения линий, приравняв выражения 1 x и — x 2 + 4 x — 2 . При условии, что x не равно нулю, равенство 1 x = — x 2 + 4 x — 2 становится эквивалентным уравнению третьей степени — x 3 + 4 x 2 — 2 x — 1 = 0 с целыми коэффициентами. Освежить в памяти алгоритм по решению таких уравнений мы можете, обратившись к разделу «Решение кубических уравнений».

Корнем этого уравнения является х = 1 : — 1 3 + 4 · 1 2 — 2 · 1 — 1 = 0 .

Разделив выражение — x 3 + 4 x 2 — 2 x — 1 на двучлен x — 1 , получаем: — x 3 + 4 x 2 — 2 x — 1 ⇔ — ( x — 1 ) ( x 2 — 3 x — 1 ) = 0

Оставшиеся корни мы можем найти из уравнения x 2 — 3 x — 1 = 0 :

x 2 — 3 x — 1 = 0 D = ( — 3 ) 2 — 4 · 1 · ( — 1 ) = 13 x 1 = 3 + 13 2 ≈ 3 . 3 ; x 2 = 3 — 13 2 ≈ — 0 . 3

Мы нашли интервал x ∈ 1 ; 3 + 13 2 , на котором фигура G заключена выше синей и ниже красной линии. Это помогает нам определить площадь фигуры:

S ( G ) = ∫ 1 3 + 13 2 — x 2 + 4 x — 2 — 1 x d x = — x 3 3 + 2 x 2 — 2 x — ln x 1 3 + 13 2 = = — 3 + 13 2 3 3 + 2 · 3 + 13 2 2 — 2 · 3 + 13 2 — ln 3 + 13 2 — — — 1 3 3 + 2 · 1 2 — 2 · 1 — ln 1 = 7 + 13 3 — ln 3 + 13 2

Ответ: S ( G ) = 7 + 13 3 — ln 3 + 13 2

Необходимо вычислить площадь фигуры, которая ограничена кривыми y = x 3 , y = — log 2 x + 1 и осью абсцисс.

Решение

Нанесем все линии на график. Мы можем получить график функции y = — log 2 x + 1 из графика y = log 2 x , если расположим его симметрично относительно оси абсцисс и поднимем на одну единицу вверх. Уравнение оси абсцисс у = 0 .

Как найти площадь треугольника интегралом

Обозначим точки пересечения линий.

Как видно из рисунка, графики функций y = x 3 и y = 0 пересекаются в точке ( 0 ; 0 ) . Так получается потому, что х = 0 является единственным действительным корнем уравнения x 3 = 0 .

x = 2 является единственным корнем уравнения — log 2 x + 1 = 0 , поэтому графики функций y = — log 2 x + 1 и y = 0 пересекаются в точке ( 2 ; 0 ) .

x = 1 является единственным корнем уравнения x 3 = — log 2 x + 1 . В связи с этим графики функций y = x 3 и y = — log 2 x + 1 пересекаются в точке ( 1 ; 1 ) . Последнее утверждение может быть неочевидным, но уравнение x 3 = — log 2 x + 1 не может иметь более одного корня, так как функция y = x 3 является строго возрастающей, а функция y = — log 2 x + 1 строго убывающей.

Дальнейшее решение предполагает несколько вариантов.

Вариант №1

Фигуру G мы можем представить как сумму двух криволинейных трапеций, расположенных выше оси абсцисс, первая из которых располагается ниже средней линии на отрезке x ∈ 0 ; 1 , а вторая ниже красной линии на отрезке x ∈ 1 ; 2 . Это значит, что площадь будет равна S ( G ) = ∫ 0 1 x 3 d x + ∫ 1 2 ( — log 2 x + 1 ) d x .

Вариант №2

Фигуру G можно представить как разность двух фигур, первая из которых расположена выше оси абсцисс и ниже синей линии на отрезке x ∈ 0 ; 2 , а вторая между красной и синей линиями на отрезке x ∈ 1 ; 2 . Это позволяет нам найти площадь следующим образом:

S ( G ) = ∫ 0 2 x 3 d x — ∫ 1 2 x 3 — ( — log 2 x + 1 ) d x

В этом случае для нахождения площади придется использовать формулу вида S ( G ) = ∫ c d ( g 2 ( y ) — g 1 ( y ) ) d y . Фактически, линии, которые ограничивают фигуру, можно представить в виде функций от аргумента y .

Разрешим уравнения y = x 3 и — log 2 x + 1 относительно x :

y = x 3 ⇒ x = y 3 y = — log 2 x + 1 ⇒ log 2 x = 1 — y ⇒ x = 2 1 — y

Получим искомую площадь:

S ( G ) = ∫ 0 1 ( 2 1 — y — y 3 ) d y = — 2 1 — y ln 2 — y 4 4 0 1 = = — 2 1 — 1 ln 2 — 1 4 4 — — 2 1 — 0 ln 2 — 0 4 4 = — 1 ln 2 — 1 4 + 2 ln 2 = 1 ln 2 — 1 4

Ответ: S ( G ) = 1 ln 2 — 1 4

Необходимо вычислить площадь фигуры, которая ограничена линиями y = x , y = 2 3 x — 3 , y = — 1 2 x + 4 .

Решение

Красной линией нанесем на график линию, заданную функцией y = x . Синим цветом нанесем линию y = — 1 2 x + 4 , черным цветом обозначим линию y = 2 3 x — 3 .

Как найти площадь треугольника интегралом

Отметим точки пересечения.

Найдем точки пересечения графиков функций y = x и y = — 1 2 x + 4 :

x = — 1 2 x + 4 О Д З : x ≥ 0 x = — 1 2 x + 4 2 ⇒ x = 1 4 x 2 — 4 x + 16 ⇔ x 2 — 20 x + 64 = 0 D = ( — 20 ) 2 — 4 · 1 · 64 = 144 x 1 = 20 + 144 2 = 16 ; x 2 = 20 — 144 2 = 4 П р о в е р к а : x 1 = 16 = 4 , — 1 2 x 1 + 4 = — 1 2 · 16 + 4 = — 4 ⇒ x 1 = 16 н е я в л я е т с я р е ш е н и е м у р а в н е н и я x 2 = 4 = 2 , — 1 2 x 2 + 4 = — 1 2 · 4 + 4 = 2 ⇒ x 2 = 4 я в л я е т с я р е ш е н и е м у р а в н и н и я ⇒ ( 4 ; 2 ) т о ч к а п е р е с е ч е н и я y = x и y = — 1 2 x + 4

Найдем точку пересечения графиков функций y = x и y = 2 3 x — 3 :

x = 2 3 x — 3 О Д З : x ≥ 0 x = 2 3 x — 3 2 ⇔ x = 4 9 x 2 — 4 x + 9 ⇔ 4 x 2 — 45 x + 81 = 0 D = ( — 45 ) 2 — 4 · 4 · 81 = 729 x 1 = 45 + 729 8 = 9 , x 2 45 — 729 8 = 9 4 П р о в е р к а : x 1 = 9 = 3 , 2 3 x 1 — 3 = 2 3 · 9 — 3 = 3 ⇒ x 1 = 9 я в л я е т с я р е ш е н и е м у р а в н е н и я ⇒ ( 9 ; 3 ) т о ч к а п е р е с е ч а н и я y = x и y = 2 3 x — 3 x 2 = 9 4 = 3 2 , 2 3 x 1 — 3 = 2 3 · 9 4 — 3 = — 3 2 ⇒ x 2 = 9 4 н е я в л я е т с я р е ш е н и е м у р а в н е н и я

Найдем точку пересечения линий y = — 1 2 x + 4 и y = 2 3 x — 3 :

— 1 2 x + 4 = 2 3 x — 3 ⇔ — 3 x + 24 = 4 x — 18 ⇔ 7 x = 42 ⇔ x = 6 — 1 2 · 6 + 4 = 2 3 · 6 — 3 = 1 ⇒ ( 6 ; 1 ) т о ч к а п е р е с е ч е н и я y = — 1 2 x + 4 и y = 2 3 x — 3

Дальше мы можем продолжить вычисления двумя способами.

Способ №1

Представим площадь искомой фигуры как сумму площадей отдельных фигур.

Как найти площадь треугольника интегралом

Тогда площадь фигуры равна:

S ( G ) = ∫ 4 6 x — — 1 2 x + 4 d x + ∫ 6 9 x — 2 3 x — 3 d x = = 2 3 x 3 2 + x 2 4 — 4 x 4 6 + 2 3 x 3 2 — x 2 3 + 3 x 6 9 = = 2 3 · 6 3 2 + 6 2 4 — 4 · 6 — 2 3 · 4 3 2 + 4 2 4 — 4 · 4 + + 2 3 · 9 3 2 — 9 2 3 + 3 · 9 — 2 3 · 6 3 2 — 6 2 3 + 3 · 6 = = — 25 3 + 4 6 + — 4 6 + 12 = 11 3

Способ №2

Площадь исходной фигуры можно представить как сумму двух других фигур.

Как найти площадь треугольника интегралом

Тогда решим уравнение линии относительно x , а только после этого применим формулу вычисления площади фигуры.

y = x ⇒ x = y 2 к р а с н а я л и н и я y = 2 3 x — 3 ⇒ x = 3 2 y + 9 2 ч е р н а я л и н и я y = — 1 2 x + 4 ⇒ x = — 2 y + 8 с и н я я л и н и я

Таким образом, площадь равна:

S ( G ) = ∫ 1 2 3 2 y + 9 2 — — 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 — y 2 d y = = ∫ 1 2 7 2 y — 7 2 d y + ∫ 2 3 3 2 y + 9 2 — y 2 d y = = 7 4 y 2 — 7 4 y 1 2 + — y 3 3 + 3 y 2 4 + 9 2 y 2 3 = 7 4 · 2 2 — 7 4 · 2 — 7 4 · 1 2 — 7 4 · 1 + + — 3 3 3 + 3 · 3 2 4 + 9 2 · 3 — — 2 3 3 + 3 · 2 2 4 + 9 2 · 2 = = 7 4 + 23 12 = 11 3

Как видите, значения совпадают.

Ответ: S ( G ) = 11 3

Видео:9 класс, 12 урок, Теорема о площади треугольникаСкачать

9 класс, 12 урок, Теорема о площади треугольника

Итоги

Для нахождения площади фигуры, которая ограничена заданными линиями нам необходимо построить линии на плоскости, найти точки их пересечения, применить формулу для нахождения площади. В данном разделе мы рассмотрели наиболее часто встречающиеся варианты задач.

Видео:Найти площадь фигуры, ограниченной линиями. Пример 1.Скачать

Найти площадь фигуры, ограниченной линиями. Пример 1.

Геометрические приложения определенного интеграла

Как найти площадь треугольника интеграломФормулы для вычисления площадей фигур на плоскости, длин дуг кривых на плоскости, площадей поверхностей тел вращения и объемов тел с помощью определенного интеграла
Как найти площадь треугольника интеграломПримеры решения задач на вычисление площадей фигур на плоскости
Как найти площадь треугольника интеграломПример решения задачи на вычисление длины дуги кривой на плоскости
Как найти площадь треугольника интеграломВывод формул для объема пирамиды и для объема шара
Как найти площадь треугольника интеграломВывод формулы для площади сферы

Как найти площадь треугольника интегралом

Видео:Как найти площадь треугольника без формулы?Скачать

Как найти площадь треугольника без формулы?

Формулы для вычисления площадей фигур на плоскости, длин дуг кривых на плоскости, площадей поверхностей тел вращения и объемов тел с помощью определенного интеграла

В данном разделе справочника приведена таблица, содержащая формулы, с помощью которых можно вычислить:

Площади криволинейных трапеций различного вида (площади фигур, ограниченных графиками функций);

Длины дуг кривых на плоскости;

Объемы тел, если известны площади их поперечных сечений;

Объемы тел, полученных при вращении криволинейных трапеций вокруг оси абсцисс Ox ;

Площади поверхностей тел, полученных при вращении графиков функций вокруг оси абсцисс Ox .

a Ox ,
а с боков – отрезками прямых

Площадь криволинейной трапеции, ограниченной сверху осью Ox , снизу – графиком функции

a Ox ,
а с боков – отрезками прямых

Объем тела, полученного при вращении криволинейной трапеции, ограниченной сверху графиком функции

a Ox ,
а с боков – отрезками прямых

вокруг оси Ox

Площадь поверхности тела, полученного при вращении графика функции

y = f (x), f (x) > 0, Как найти площадь треугольника интегралом,

вокруг оси Ox

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

a Ox ,
а с боков – отрезками прямых

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

Площадь криволинейной трапеции, ограниченной сверху осью Ox , снизу – графиком функции

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

a Ox ,
а с боков – отрезками прямых

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

a S (x) , Как найти площадь треугольника интегралом.

Плоскость каждого поперечного сечения перпендикулярна оси Ox

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

Объем тела, полученного при вращении криволинейной трапеции, ограниченной сверху графиком функции

a Ox ,
а с боков – отрезками прямых

вокруг оси Ox

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

Площадь поверхности тела, полученного при вращении графика функции

y = f (x), f (x) > 0, Как найти площадь треугольника интегралом,

вокруг оси Ox .

Применение формул, перечисленных в таблице, проиллюстрировано на примерах, содержащих, в частности, вывод формулы объема пирамиды, формул объема шара и площади сферы.

Видео:Как найти площадь треугольника? #треугольник #математика #егэ #shorts #подготовкакегэ #огэ #площадьСкачать

Как найти площадь треугольника? #треугольник #математика #егэ #shorts #подготовкакегэ #огэ #площадь

Примеры решения задач на вычисление площадей фигур на плоскости

Пример 1 . Найти площадь фигуры, ограниченной линиями

Как найти площадь треугольника интегралом

Решение . Рассматриваемая фигура (рис. 1) состоит из двух частей: треугольника OAB и криволинейной трапеции ABCD.

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

Пример 2 . Найти площадь криволинейной трапеции, изображенной на рисунке 2

Как найти площадь треугольника интегралом

Решение . Площадь криволинейной трапеции ABCD вычисляется с помощью формулы для площади криволинейной трапеции с f (x)

Как найти площадь треугольника интегралом.

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

Ответ . Как найти площадь треугольника интегралом.

Видео:Интегралы №12 Вычисление площадейСкачать

Интегралы №12 Вычисление площадей

Пример решения задачи на вычисление длины дуги кривой на плоскости

Пример 3 . Найти длину дуги графика функции

Как найти площадь треугольника интегралом, 8 .

Решение . График рассматриваемой функции изображен на рисунке 3

Как найти площадь треугольника интегралом

Для вычисления длины дуги AB нужно, в соответствии с формулой для длины дуги графика функции, вычислить определенный интеграл

РисунокФормулаОписание
Как найти площадь треугольника интеграломКак найти площадь треугольника интегралом
Как найти площадь треугольника интеграломКак найти площадь треугольника интегралом
Как найти площадь треугольника интеграломКак найти площадь треугольника интегралом
Как найти площадь треугольника интеграломКак найти площадь треугольника интегралом
Как найти площадь треугольника интеграломКак найти площадь треугольника интегралом
Как найти площадь треугольника интеграломКак найти площадь треугольника интегралом
Как найти площадь треугольника интегралом(1)

Как найти площадь треугольника интегралом

Подставим найденную производную в формулу (1), а затем вычислим полученные интегралы при помощи таблицы неопределенных интегралов и формулы Ньютона — Лейбница:

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

Ответ . Как найти площадь треугольника интегралом

Видео:Найти площадь фигуры, ограниченной линиями. Пример 5.Скачать

Найти площадь фигуры, ограниченной линиями. Пример 5.

Вывод формул для объема пирамиды и для объема шара

Решение . Рассмотрим произвольную n — угольную пирамиду BA1A2 . An с вершиной B, высота BK которой равна H, а площадь основания A1A2 . An равна S. Обозначим через S (x) площадь сечения Как найти площадь треугольника интеграломэтой пирамиды плоскостью, параллельной параллельной основанию пирамиды и находящейся на расстоянии расстоянии x от вершины пирамиды B (рис. 4).

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

Поскольку многоугольники Как найти площадь треугольника интеграломи A1A2 . An подобны с коэффициентом подобия Как найти площадь треугольника интегралом, то площади этих многоугольников удовлетворяют равенству

Как найти площадь треугольника интегралом(2)

Рассмотрим теперь в пространстве систему координат Oxyz и расположим нашу пирамиду BA1A2 . An так, чтобы ее вершина B совпала с началом координат O, а высота пирамиды BK оказалась лежащей на оси Ox (рис. 5).

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

Тогда сечение Как найти площадь треугольника интеграломпирамиды и будет поперечным сечением, поскольку его плоскость перпендикулярна оси Ox.

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

Итак, мы получили формулу для объема пирамиды

Как найти площадь треугольника интегралом

котрой пользовались в различных разделах справочника.

Замечание . Совершенно аналогично выводится формула для объема конуса. Формулы для объема прямой призмы объема прямой призмы и для объема цилиндра вывести таким способом еще проще, поскольку у них все сечения, перпендикулярные высоте, равны между собой. Мы рекомендуем провести эти выводы читателю самостоятельно в качестве полезного упражнения.

Пример 5 . Вывести формулу для объема шара радиуса R, воспользовавшись формулой для вычисления объема тела вращения.

Как найти площадь треугольника интегралом(3)

графиком которой является верхняя полуокружность радиуса R с центром в начале координат O. Шар радиуса R получается в результате вращения вокруг оси Ox криволинейной трапеции, ограниченной сверху графиком функции (3) и ограниченной снизу отрезкомКак найти площадь треугольника интеграломоси Ox (рис. 6).

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

что и должно было получиться.

Видео:Найдите площадь треугольника на рисунке ★ Два способа решенияСкачать

Найдите площадь треугольника на рисунке ★ Два способа решения

Вывод формулы для площади сферы

Решение . Снова рассмотрим функцию

Как найти площадь треугольника интегралом(4)

графиком которой является верхняя полуокружность радиуса R с центром в начале координат O (рис. 7).

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

Поскольку сфера радиуса R получается в результате вращения вокруг оси Ox графика функции (4), то в соответствии с формулой для вычисления площади поверхности тела вращения получаем

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

Подставим найденную производную в выражение, стоящее под знаком квадратного корня:

Как найти площадь треугольника интегралом

Как найти площадь треугольника интегралом

Таким образом, подынтегральная функция принимает вид:

🎬 Видео

Определённый интеграл. ПлощадьСкачать

Определённый интеграл.  Площадь

Криволинейная трапеция и ее площадь. 11 класс.Скачать

Криволинейная трапеция и ее площадь. 11 класс.

Площадь фигуры через двойной интеграл в полярных координатахСкачать

Площадь фигуры через двойной интеграл в полярных координатах

Как удивить учителя математикиСкачать

Как удивить учителя математики

Определенный интеграл. 11 класс.Скачать

Определенный интеграл. 11 класс.

Геометрия 8 класс (Урок№10 - Площадь треугольника.)Скачать

Геометрия 8 класс (Урок№10 - Площадь треугольника.)

Как найти площадь этого треугольника, не зная формулы?Скачать

Как найти площадь этого треугольника, не зная формулы?

8 класс, 14 урок, Площадь треугольникаСкачать

8 класс, 14 урок, Площадь треугольника

Площадь сферы внутри цилиндра. Поверхностный интегралСкачать

Площадь сферы внутри цилиндра. Поверхностный интеграл
Поделиться или сохранить к себе: