- Определение направляющих косинусов
- Формулы вычисления направляющих косинусов вектора
- Формула вычисления направляющих косинусов вектора для плоских задач
- Формула вычисления направляющих косинусов вектора для пространственных задач
- Примеры задач с направляющими косинусами вектора
- Примеры плоских задач с направляющими косинусами вектора
- Примеры пространственных задач с направляющими косинусами вектора
- Нахождение угла между векторами
- Нахождение угла между векторами
- Как найти косинус угла между векторами
- Формула
- Примеры вычисления косинуса угла между векторами
- 🎥 Видео
Видео:Косинус угла между векторами. Коллинеарность векторовСкачать
Определение направляющих косинусов
Направляющие косинусы однозначно задают направление вектора.
Соответственно, координаты единичного вектора равны его направляющим косинусам.
Видео:§7 Направляющие косинусы вектораСкачать
Формулы вычисления направляющих косинусов вектора
Формула вычисления направляющих косинусов вектора для плоских задач
В случае плоской задачи (рис. 1) направляющие косинусы вектора a = < ax ; ay > можно найти воспользовавшись следующей формулой
cos α = | ax | ; | cos β = | ay |
| a | | | a | |
рис. 1 |
Формула вычисления направляющих косинусов вектора для пространственных задач
В случае пространственной задачи (рис. 2) направляющие косинусы вектора a = < ax ; ay ; az > можно найти воспользовавшись следующей формулой
cos α = | ax | ; | cos β = | ay | ; | cos γ = | az |
| a | | | a | | | a | |
рис. 2 |
Видео:Угол между векторами | МатематикаСкачать
Примеры задач с направляющими косинусами вектора
Примеры плоских задач с направляющими косинусами вектора
Найдем модуль вектора a :
| a | = √ 3 2 + 4 2 = √ 9 + 16 = √ 25 = 5.
Найдем направляющие косинусы вектора a :
cos α = | ax | = | 3 | = 0.6 |
| a | | 5 |
cos β = | ay | = | 4 | = 0.8 |
| a | | 5 |
Ответ: направляющие косинусы вектора cos α = 0.6, cos β = 0.8.
ax = | a | · cos α = 26 · 5 13 = 10
ay = | a | · cos β = 26 · (- 12 13 ) = -24
Примеры пространственных задач с направляющими косинусами вектора
Найдем модуль вектора a :
| a | = √ 2 2 + 4 2 + 4 2 = √ 4 + 16 + 16 = √ 36 = 6.
Найдем направляющие косинусы вектора a :
cos α = | ax | = | 2 | = | 1 |
| a | | 6 | 3 |
cos β = | ay | = | 4 | = | 2 |
| a | | 6 | 3 |
cos γ = | az | = | 4 | = | 2 |
| a | | 6 | 3 |
Ответ: направляющие косинусы вектора cos α = 1 3 , cos β = 2 3 , cos γ = 2 3 .
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Видео:#вектор Разложение вектора по ортам. Направляющие косинусыСкачать
Нахождение угла между векторами
Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.
Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a → и b → , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы O A → = b → и O B → = b →
Углом между векторами a → и b → называется угол между лучами О А и О В .
Полученный угол будем обозначать следующим образом: a → , b → ^
Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.
a → , b → ^ = 0 , когда векторы являются сонаправленными и a → , b → ^ = π , когда векторы противоположнонаправлены.
Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π 2 радиан.
Если хотя бы один из векторов является нулевым, то угол a → , b → ^ не определен.
Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать
Нахождение угла между векторами
Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.
Согласно определению скалярное произведение есть a → , b → = a → · b → · cos a → , b → ^ .
Если заданные векторы a → и b → ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:
cos a → , b → ^ = a → , b → a → · b →
Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.
Исходные данные: векторы a → и b → . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно — 9 . Необходимо вычислить косинус угла между векторами и найти сам угол.
Решение
Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cos a → , b → ^ = — 9 3 · 6 = — 1 2 ,
Теперь определим угол между векторами: a → , b → ^ = a r c cos ( — 1 2 ) = 3 π 4
Ответ: cos a → , b → ^ = — 1 2 , a → , b → ^ = 3 π 4
Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.
Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a → = ( a x , a y ) , b → = ( b x , b y ) выглядит так:
cos a → , b → ^ = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2
А формула для нахождения косинуса угла между векторами в трехмерном пространстве a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) будет иметь вид: cos a → , b → ^ = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2
Исходные данные: векторы a → = ( 2 , 0 , — 1 ) , b → = ( 1 , 2 , 3 ) в прямоугольной системе координат. Необходимо определить угол между ними.
Решение
- Для решения задачи можем сразу применить формулу:
cos a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 2 2 + 0 2 + ( — 1 ) 2 · 1 2 + 2 2 + 3 2 = — 1 70 ⇒ a → , b → ^ = a r c cos ( — 1 70 ) = — a r c cos 1 70
- Также можно определить угол по формуле:
cos a → , b → ^ = ( a → , b → ) a → · b → ,
но предварительно рассчитать длины векторов и скалярное произведение по координатам: a → = 2 2 + 0 2 + ( — 1 ) 2 = 5 b → = 1 2 + 2 2 + 3 2 = 14 a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 = — 1 cos a → , b → ^ = a → , b → ^ a → · b → = — 1 5 · 14 = — 1 70 ⇒ a → , b → ^ = — a r c cos 1 70
Ответ: a → , b → ^ = — a r c cos 1 70
Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.
Исходные данные: на плоскости в прямоугольной системе координат заданы точки A ( 2 , — 1 ) , B ( 3 , 2 ) , C ( 7 , — 2 ) . Необходимо определить косинус угла между векторами A C → и B C → .
Решение
Найдем координаты векторов по координатам заданных точек A C → = ( 7 — 2 , — 2 — ( — 1 ) ) = ( 5 , — 1 ) B C → = ( 7 — 3 , — 2 — 2 ) = ( 4 , — 4 )
Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cos A C → , B C → ^ = ( A C → , B C → ) A C → · B C → = 5 · 4 + ( — 1 ) · ( — 4 ) 5 2 + ( — 1 ) 2 · 4 2 + ( — 4 ) 2 = 24 26 · 32 = 3 13
Ответ: cos A C → , B C → ^ = 3 13
Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы O A → = a → и O B → = b → , тогда, согласно теореме косинусов в треугольнике О А В , будет верным равенство:
A B 2 = O A 2 + O B 2 — 2 · O A · O B · cos ( ∠ A O B ) ,
b → — a → 2 = a → + b → — 2 · a → · b → · cos ( a → , b → ) ^
и отсюда выведем формулу косинуса угла:
cos ( a → , b → ) ^ = 1 2 · a → 2 + b → 2 — b → — a → 2 a → · b →
Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.
Хотя указанный способ имеет место быть, все же чаще применяют формулу:
Видео:Задача 3. Найти косинус угла между векторами.Скачать
Как найти косинус угла между векторами
Видео:Как находить угол между векторамиСкачать
Формула
Чтобы найти косинус угла между векторами нужно, скалярное произведение этих векторов разделить на произведение их длин.
Видео:Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать
Примеры вычисления косинуса угла между векторами
Задание. Найти косинус угла $phi$ между векторами $bar=(4 ;-3)$ и $bar=(1 ;-2)$
Решение. Так как векторы заданы на плоскости, воспользуемся формулой
Ответ. $cos phi=frac<2 sqrt>$
Задание. Найти косинус угла между векторами $bar=(3 ;-4 ; 0)$ и $bar=(4 ;-4 ;-2)$, заданных в пространстве.
Решение. Для нахождения косинуса угла между заданными векторами, воспользуемся формулой
Подставляя координаты векторов $bar$ и $bar$, получим
Ответ. $begin cos phi=frac end$
🎥 Видео
Найти сумму направляющих косинусов вектораСкачать
Угол между векторами. 9 класс.Скачать
Нахождение угла между векторами через координаты. 9 класс.Скачать
ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать
Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать
Скалярное произведение векторов. 9 класс.Скачать
Математика без Ху!ни. Смешанное произведение векторовСкачать
Координаты вектора. 9 класс.Скачать
Построение проекции вектора на осьСкачать
Как разложить вектор по базису - bezbotvyСкачать
Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать
Геометрия. 9 класс. Уравнение прямой. Направляющий вектор и вектор нормали прямой /22.10.2020/Скачать