Как найти длины всех сторон треугольника по координатам векторов

Решить треугольник Онлайн по координатам

1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;

2) система линейных неравенств, определяющих треугольник;

2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;

3) внутренние углы по теореме косинусов;

4) площадь треугольника;

5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;

10) параметры вписанной и описанной окружностей и их уравнения.

Внимание! Этот сервис не работает в браузере IE (Internet Explorer).

Запишите координаты вершин треугольника и нажмите кнопку.

A ( ; ), B ( ; ), C ( ; )

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Видео:Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Расчет треугольника по координатам вершин

Этот онлайн калькулятор по введенным координатам вершин вычисляет параметры треугольника: длины сторон, углы, периметр и площадь.

Этот онлайн калькулятор предназначен для быстрого вычисления ряда характеристик треугольника по координатам его вершин. Вы вводите координаты вершин A, B и C. Калькулятор рассчитывает по координатам следующие величины:

Как найти длины всех сторон треугольника по координатам векторовОбозначения треугольника

  • длину стороны a — стороны, противолежащей вершине А
  • длину стороны b — стороны, противолежащей вершине B
  • длину стороны c — стороны, противолежащей вершине C
  • значение угла α при вершине A
  • значение угла β при вершине B
  • значение угла γ при вершине C
  • периметр треугольника
  • площадь треугольника

Если нужно что-то еще, пишите в комментариях, добавим. Формулы расчета значений треугольника описаны под калькулятором.

Видео:Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)

Уравнение длины сторон треугольника – по координатам и сторонам

Уравнение длин сторон треугольника – это первые вкрапления высшей математики в математику школьного курса. Понимание данной тематики приближает ученика к университетскому уровню, вместе с тем делая более понятной тему функции.

Как найти длины всех сторон треугольника по координатам векторов

Видео:Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

Функция

Что такое функция? Это зависимость одной величины от другой. В математической функции чаще всего две неизвестных: независимая и зависимая или х и у соответственно.

Что это значит? Это значит, что х может принимать абсолютно любое значение, а у будет под него подстраиваться, меняясь в соответствии с коэффициентами функции.

Существуют ситуации, когда функция имеет несколько переменных. Зависимая у всегда 1, но факторов, которые влияют на неё может быть несколько. Не всегда такую функцию получается отразить на графике. В лучшем случае графически можно отобразить зависимость у от 2 переменных.

Как проще всего представить зависимость у(х)?

Да очень просто. Представьте себе избалованного ребенка и богатую любящую мать. Они вместе приходят в магазин и начинают клянчить конфеты. Кто знает, сколько конфет мальчик потребует сегодня?

Никто, но в зависимости от количества конфет увеличится сумма, которую мама оплатит на кассе. В этом случае, зависимой величиной является сумма в чеке, а независимой – количество конфет, которое захочет мальчик сегодня.

Очень важно понимать, что одному значению функции у, всегда соответствует 1 значение аргумента х. Но, как и с корнями квадратного уравнения, эти значения могут совпадать.

Видео:№942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)Скачать

№942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)

Уравнение прямой линии

Зачем нам нужно уравнение прямой, если мы говорим об уравнении длин сторон треугольника?

Да затем, что каждая из сторон треугольника это отрезок. А отрезок это ограниченная часть прямой. То есть мы можем задать уравнения прямых. А в точках их пересечения ограничить линии, тем самым обрезав прямые и превратив их в отрезки.

Уравнение прямой выглядит следующим образом:

Видео:Математика без Ху!ни. Смешанное произведение векторовСкачать

Математика без Ху!ни. Смешанное произведение векторов

Уравнение сторон треугольника

Необходимо найти уравнение длин сторон треугольника с вершинами в точках А(3,7) ; В(5,3); С(12;9)

Все координаты положительны, значит, треугольник будет расположен в 1 координатной четверти.

Поочередно составим уравнения каждой из линий треугольника.

  • Первой будет линия АВ. Координаты точек подставим в уравнение прямой на место х и у. Таким образом мы получим систему из двух линейных уравнений. Решив ее можно найти значение коэффициентов для функции:

Из первого уравнения выразим b и подставим во второе.

🌟 Видео

Координаты вектора. 9 класс.Скачать

Координаты вектора. 9 класс.

Вычисляем высоту через координаты вершин 1Скачать

Вычисляем высоту через координаты вершин  1

Метод координат. Как найти медиану треугольника, если известны координаты его вершин?Скачать

Метод координат. Как найти медиану треугольника, если известны координаты его вершин?

№1049. Найдите углы треугольника с вершинами А (-1; √3), В(1;-√3 )Скачать

№1049. Найдите углы треугольника с вершинами А (-1; √3), В(1;-√3 )

Нахождение длины отрезка по координатамСкачать

Нахождение длины отрезка по координатам

Вычисляем угол через координаты вершинСкачать

Вычисляем угол через координаты вершин

Вычисление медианы, высоты и угла по координатам вершинСкачать

Вычисление медианы, высоты и угла по координатам вершин

Длина вектора через координаты. 9 класс.Скачать

Длина вектора через координаты. 9 класс.

Нахождение координат вектора. Практическая часть. 9 класс.Скачать

Нахождение координат вектора. Практическая часть. 9 класс.

Координаты середины отрезкаСкачать

Координаты середины отрезка

Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACDСкачать

Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACD

Угол между векторами | МатематикаСкачать

Угол между векторами | Математика

Координаты точки и координаты вектора 1.Скачать

Координаты точки и координаты вектора 1.

Площадь треугольника, построенного на векторахСкачать

Площадь треугольника, построенного на векторах

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика
Поделиться или сохранить к себе: