Математика | 10 — 11 классы
Вычислите длины диагоналей параллелограмма, построенного на векторах a = 2m + n и b = m — 2n , где m и n ― единичные векторы, угол между которыми o 60 .
d1 = 2m + n + m — 2n = 3m — n
|d1|² = (3m — n)(3m — n) = 9m² — 6mn + n² = 9|m|² — 6|m||n|cosa + |n|² = 9 * 1 — 6 * 1 * 1 * 1 / 2 + 1 = 9 — 3 + 1 = 7
d2 = 2m + n — m + 2n = m + 3n
|d2|² = (m + 3n(m + 3n) = m² + 6mn + 9n² = |m|² + 6|m||n|cosa + 9|n|² = 1 + 6 * 1 * 1 * 1 / 2 + 9 * 1 = 1 + 3 + 9 = 13.
- Вычислить длины диагоналей и площадь параллелограмма, построенного на векторах : Полное решение?
- Параллелограмм построен на векторах а = (1 ; 2 ; — 3) b = (2 ; — 1 ; — 1), нужно определить косинус угла между диагоналями и найти длину высоты, опущенной на вектор а?
- Найдите координаты вектора единичной длины, коллинеарного прямой 3x — 2y + 1 = 0?
- Дан параллелограмм ABCD?
- Вычислить длину вектора а?
- Найдите а вектор * в вектор если угол между векторами равен 45° ?
- Четырехугольник АВСD — параллелограмм , О — точка пересечения его диагоналей?
- Дана система координат Oe1e2 , причем |e1| = 2, |e2| = корень из 3 , угол между ними равен 5pi / 6 ?
- Найдите угол между диагоналями параллелограмма построенного на векторах p = 2a — b b q = a + b как на сторонах если a и b единичные векторы и угол между векторами a и b = 60°?
- Дан параллелограмм ABCD?
- Математический портал
- Nav view search
- Navigation
- Search
- Скалярное произведение векторов, свойства. Длина векторов. Угол между векторами.
- Длина вектора.
- Скалярное произведение векторов.
- Геометрические свойства скалярного произведения:
- Алгебраические свойства скалярного произведения:
- Из этой формулы, в частности, следует формула для определения косинуса угла между векторами:
- Задача 32233 Определить длины диагоналей.
- Условие
- Все решения
- 🔥 Видео
Видео:Найти угол между векторами и площадь параллелограмма, построенного на этих векторахСкачать
Вычислить длины диагоналей и площадь параллелограмма, построенного на векторах : Полное решение?
Вычислить длины диагоналей и площадь параллелограмма, построенного на векторах : Полное решение.
Видео:Площадь параллелограмма, построенного на данных векторахСкачать
Параллелограмм построен на векторах а = (1 ; 2 ; — 3) b = (2 ; — 1 ; — 1), нужно определить косинус угла между диагоналями и найти длину высоты, опущенной на вектор а?
Параллелограмм построен на векторах а = (1 ; 2 ; — 3) b = (2 ; — 1 ; — 1), нужно определить косинус угла между диагоналями и найти длину высоты, опущенной на вектор а.
Видео:Найдите длины диагоналей параллелограмма, построенного на векторах a=(1;-1;-4) и b=(-5;3;8)Скачать
Найдите координаты вектора единичной длины, коллинеарного прямой 3x — 2y + 1 = 0?
Найдите координаты вектора единичной длины, коллинеарного прямой 3x — 2y + 1 = 0.
Видео:Площадь параллелограмма по векторамСкачать
Дан параллелограмм ABCD?
Дан параллелограмм ABCD.
Найдите сумму векторов вектор АВи АD.
Видео:Сумма квадратов диагоналей параллелограммаСкачать
Вычислить длину вектора а?
Вычислить длину вектора а.
Видео:Найдите площадь параллелограмма, построенного на векторахСкачать
Найдите а вектор * в вектор если угол между векторами равен 45° ?
Найдите а вектор * в вектор если угол между векторами равен 45° .
Вектор а = √2, вектор в = 6.
Видео:1. Векторы и параллелограмм задачи №1Скачать
Четырехугольник АВСD — параллелограмм , О — точка пересечения его диагоналей?
Четырехугольник АВСD — параллелограмм , О — точка пересечения его диагоналей.
Назовите вектор с началом О , равный вектору — OD.
Видео:Задача 4. Вычислить площадь параллелограмма, построенного на векторах.Скачать
Дана система координат Oe1e2 , причем |e1| = 2, |e2| = корень из 3 , угол между ними равен 5pi / 6 ?
Дана система координат Oe1e2 , причем |e1| = 2, |e2| = корень из 3 , угол между ними равен 5pi / 6 .
Найти угол между векторами a(1 ; 2) и b(2 ; 2) и площадь параллелограмма, построенного на векторах a и b.
Видео:2. Векторы в параллелограмме Решение задач №2Скачать
Найдите угол между диагоналями параллелограмма построенного на векторах p = 2a — b b q = a + b как на сторонах если a и b единичные векторы и угол между векторами a и b = 60°?
Найдите угол между диагоналями параллелограмма построенного на векторах p = 2a — b b q = a + b как на сторонах если a и b единичные векторы и угол между векторами a и b = 60°.
Видео:§20 Нахождение объёма параллелипипедаСкачать
Дан параллелограмм ABCD?
Дан параллелограмм ABCD.
Выразите вектор ba через векторы bc и ac.
На этой странице сайта размещен вопрос Вычислите длины диагоналей параллелограмма, построенного на векторах a = 2m + n и b = m — 2n , где m и n ― единичные векторы, угол между которыми o 60 ? из категории Математика с правильным ответом на него. Уровень сложности вопроса соответствует знаниям учеников 10 — 11 классов. Здесь же находятся ответы по заданному поиску, которые вы найдете с помощью автоматической системы. Одновременно с ответом на ваш вопрос показаны другие, похожие варианты по заданной теме. На этой странице можно обсудить все варианты ответов с другими пользователями сайта и получить от них наиболее полную подсказку.
Решение на фото. Сначала посчитана разность в скобках, а потом все остальное.
Видео:Математика без Ху!ни. Смешанное произведение векторовСкачать
Математический портал
Видео:как найти площадь параллелограмма построенного на векторахСкачать
Nav view search
Navigation
Search
- Вы здесь:
- Home
- Векторная алгебра.
- Высшая математика.
- Векторная алгебра.
- Скалярное произведение векторов, свойства. Длина вектора. Угол между векторами.
Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
Скалярное произведение векторов, свойства. Длина векторов. Угол между векторами.
Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.
Видео:Угол между векторами | МатематикаСкачать
Длина вектора.
Пусть вектор $overline a=(x, y, z)$ представлен своими координатами в прямоугольном базисе. Тогда его длину можно вычислить по формуле $$|overline a|=sqrt.$$
Видео:Свойства диагоналей параллелограмма | Геометрия 8-9 классыСкачать
Скалярное произведение векторов.
Если заданы координаты точек $A(x_1, y_1, z_1) $ и $B(x_2, y_2, z_2),$ то координаты вектора $overline$ можно найти по формулам $$overline=(x_2-x_1, y_2-y_1, z_2-z_1).$$ Скалярным произведением ненулевых векторов $a_1$ и $a_2$ называется число $$(a_1, a_2)=|a_1||a_2|cos(widehat).$$
Для скалярного произведения наряду с обозначением $(a_1,a_2)$ используется также обозначение $a_1a_2.$
Видео:Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать
Геометрические свойства скалярного произведения:
1) $a_1perp a_2Leftrightarrow a_1a_2=0$ (условие перпендикулярности векторов).
2) Если $varphi=(widehat),$ то $$0leqvarphi 0; qquadqquad frac
Видео:Площадь треугольника, построенного на векторахСкачать
Алгебраические свойства скалярного произведения:
2) $(lambda a_1)a_2=lambda (a_1 a_2);$
Если векторы $a_1(X_1, Y_1, Z_1)$ и $a_2(X_2, Y_2, Z_2)$ представлены своими координатами в прямоугольном базисе, то скалярное произведение равно $$a_1a_2=X_1X_2+Y_1Y_2+Z_1Z_2. $$
Видео:6 способов построения параллелограмма.Скачать
Из этой формулы, в частности, следует формула для определения косинуса угла между векторами:
Решение.
а) $$a_1^2=(a_1, a_1)=|a_1||a_1|cos(widehat)=|a_1|^2=3^2=9.$$
б) $(3a_1-2a_2)(a_1+2a_2);$
Поскольку скалярное произведение зависит от длин векторов и угла между ними, то заданные векторы можно выбрать произвольно учитывая эти характеристики. Пусть $a_1=(3; 0). $ Тогда вектор $a_2,$ имея длину $|a_2|=4,$ и, образуя угол $frac$ с положительной полуосью оси $OX,$ имеет координаты $x=|a_2|cosfrac=-frac=-2; $
$3a_1-2a_2=3(3;0)-2(-2;2sqrt 3)=(9;0)-(-4; 4sqrt 3)=(13;-4sqrt 3);$
$a_1+2a_2=(3; 0)+2(-2;2sqrt 3) = (3; 0)+ (-4; 4sqrt 3)= (-1; 4sqrt 3).$
$(3a_1-2a_2)(a_1+2a_2)=(13; -4sqrt 3)(-1; 4sqrt 3) =-13-48=-61.$
в) $(a_1+a_2)^2.$
$a_1+a_2$=$(3; 0)+(-2; 2sqrt 3)=(1; 2sqrt 3).$
$(a_1+a_2)^2=(1; 2sqrt3) (1; 2sqrt 3)=1+12=13.$
Ответ: a) 9; б) -61; в) 13.
2.67. Вычислить длину диагоналей параллелограмма, построенного на векторах $a=p-3q, $ $b=5p+2q,$ если известно, что $|p|=2sqrt, |q|=3, (widehat
)=frac.$
Решение.
Способ 1.
Из треугольника $ABC$ имеем $AC=AB+BC=a+b=p-3q+5p+2q=6p-q.$
Зная длину векторов $p$ b $q$ и угол между этими векторами, можно найти длину вектора $AC$ по теореме косинусов:
Из треугольника $ABD$ имеем: $BD=AD-AB=b-a=5p+2q-p+3q=4p+5q.$
По теореме косинусов находим длину вектора $BD:$
$|BD|^2=|4p|^2+|5q|^2-8p5qcos widehat=$ $128+225+240=593.$
Пусть $q=(3; 0). $ Тогда вектор $p,$ имея длину $|p|=2sqrt 2,$ и образуя угол $frac$ с положительной полуосью оси $OX$ имеет координаты
Из треугольника $ABC$ имеем
Из треугольника $ABD$ имеем
$BD=AD-AB=b-a=5p+2q-p+3q=4p+5q=$ $=4(2; 2)+5(3;0)=(8; 8)+(15; 0)=(23; 8).$
Ответ: $15, sqrt .$
2.68. Определить угол между векторами $a$ и $b$ если известно, что $(a-b)^2+(a+2b)^2=20$ и $|a|=1, |b|=2.$
Ответ: $2pi/3$
$|a_1|=3; |a_2|=5. $ Определить, при каком значении $alpha$ векторы $a_1+alpha a_2$ и $a_1-alpha a_2$ будут перпендикулярны.
Ответ: $alpha=pmfrac$
В треугольнике $ABC$ $overline=3e_1-4e_2;$ $overline=e_1+5e_2.$ Вычислить длину его высоты $overline,$ если известно, что $e_1$ и $e_2$ взаимно перпендикулярные орты.
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Задача 32233 Определить длины диагоналей.
Условие
Определить длины диагоналей параллелограмма, построенного на векторах [b]a=2m+n[/b] и [b]b=m-2n[/b], где [b]m[/b] и [b]n[/b]-единичные векторы, угол между которыми 60 градусов.
Все решения
=(3vector-vector)^2=9vector*vector-6vectorvector+
vector*vector=9*1*1cos0^(o)-6*1*1*cos60^(o)+1*1*cos0^(o)=
=9-3+1=7
|vector|=sqrt(7)
=(vector+3vector)^2=vector*vector+6vectorvector+
9vector*vector=*1*1cos0^(o)+6*1*1*cos60^(o)+9*1*1*cos0^(o)=
=1+3+9=13
|vector|=sqrt(13)
🔥 Видео
№497. Одна из диагоналей параллелограмма является его высотой. Найдите эту диагональ, если периметрСкачать