Алгебраическая форма записи комплексных чисел |
Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме |
Комплексно сопряженные числа |
Модуль комплексного числа |
Деление комплексных чисел, записанных в алгебраической форме |
Изображение комплексных чисел радиус-векторами на координатной плоскости |
Аргумент комплексного числа |
Тригонометрическая форма записи комплексного числа |
Формула Эйлера. Экспоненциальная форма записи комплексного числа |
Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме |
Извлечение корня натуральной степени из комплексного числа |
- Алгебраическая форма записи комплексных чисел
- Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме
- Комплексно сопряженные числа
- Модуль комплексного числа
- Деление комплексных чисел, записанных в алгебраической форме
- Изображение комплексных чисел радиус-векторами координатной плоскости
- Аргумент комплексного числа
- Формула Эйлера. Экспоненциальная форма записи комплексного числа
- Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме
- Извлечение корня натуральной степени из комплексного числа
- Как изобразить комплексное число с помощью вектора
- Алгебра и начала математического анализа. 11 класс
- 🔍 Видео
Видео:КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТСкачать

Алгебраическая форма записи комплексных чисел
Пусть x и y — произвольные вещественные числа.
Множеством комплексных чисел называют множество всевозможных пар (x, y) вещественных чисел, на котором определены операции сложения, вычитания и умножения по правилам, описанным чуть ниже.
Множество комплексных чисел является расширением множества вещественных чисел, поскольку множество вещественных чисел содержится в нём в виде пар (x, 0) .
Комплексные числа, заданные парами (0, y) , называют чисто мнимыми числами .
Для комплексных чисел существует несколько форм записи: алгебраическая форма записи, тригонометрическая форма записи и экспоненциальная (показательная) форма записи .
Алгебраическая форма — это такая форма записи комплексных чисел, при которой комплексное число z, заданное парой вещественных чисел (x, y) , записывается в виде
| z = x + i y . | (1) |
где использован символ i , называемый мнимой единицей .
Число x называют вещественной (реальной) частью комплексного числа z = x + i y и обозначают Re z .
Число y называют мнимой частью комплексного числа z = x + i y и обозначают Im z .
Комплексные числа, у которых Im z = 0 , являются вещественными числами .
Комплексные числа, у которых Re z = 0 , являются чисто мнимыми числами .
Тригонометрическая и экспоненциальная формы записи комплексных чисел будут изложены чуть позже.
Видео:Математика без Ху!ни. Комплексные числа, часть 3. Формы записи. Возведение в степень.Скачать

Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме
Умножение комплексных чисел z1 = x1 + i y1 и z2 = x2 + i y2 , так же, как и операции сложения и вычитания, осуществляется по правилам умножения двучленов (многочленов), однако при этом учитывается важнейшее равенство, имеющее вид:
| i 2 = – 1 . | (2) |
По этой причине
Видео:Изображение комплексных чисел. Модуль комплексного числа. 11 класс.Скачать

Комплексно сопряженные числа
Два комплексных числа z = x + iy и 
Операция перехода от комплексного числа к комплексно сопряженному с ним числу называется операцией комплексного сопряжения , обозначается горизонтальной чертой над комплексным числом и удовлетворяет следующим свойствам:
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
Видео:10 класс, 34 урок, Тригонометрическая форма записи комплексного числаСкачать

Модуль комплексного числа
Модулем комплексного числа z = x + i y называют вещественное число, обозначаемое | z | и определенное по формуле
Для произвольного комплексного числа z справедливо равенство:
а для произвольных комплексных чисел z1 и z2 справедливы неравенства:
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
Замечание . Если z — вещественное число, то его модуль | z | равен его абсолютной величине.
Видео:2. Геометрическая интерпретация комплексных чисел. Модуль и аргумент комплексного числаСкачать

Деление комплексных чисел, записанных в алгебраической форме
Деление комплексного числа z1 = x1 + i y1 на отличное от нуля комплексное число z2 = x2 + i y2 осуществляется по формуле
Используя обозначения модуля комплексного числа и комплексного сопряжения, частное от деления комплексных чисел можно представить в следующем виде:
Деление на нуль запрещено.
Видео:Тригонометрическая форма комплексного числаСкачать

Изображение комплексных чисел радиус-векторами координатной плоскости
Рассмотрим плоскость с заданной на ней прямоугольной декартовой системой координат Oxy и напомним, что радиус-вектором на плоскости называют вектор, начало которого совпадает с началом системы координат.
Назовем рассматриваемую плоскость комплексной плоскостью , и будем представлять комплексное число z = x + i y радиус–вектором с координатами (x , y).
Назовем ось абсцисс Ox вещественной осью , а ось ординат Oy – мнимой осью .
При таком представлении комплексных чисел сумме комплексных чисел соответствует сумма радиус-векторов, а произведению комплексного числа на вещественное число соответствует произведение радиус–вектора на это число.
Видео:Формула Муавра ➜ Вычислить ➜ (5+5i)⁷Скачать

Аргумент комплексного числа
Рассмотрим радиус–вектор произвольного, но отличного от нуля, комплексного числа z .
Аргументом комплексного числа z называют угол φ между положительным направлением вещественной оси и радиус-вектором z .
Аргумент комплексного числа z считают положительным, если поворот от положительного направления вещественной оси к радиус-вектору z происходит против часовой стрелки, и отрицательным — в случае поворота по часовой стрелке (см. рис.).
Считается, что комплексное число нуль аргумента не имеет.
Поскольку аргумент любого комплексного числа определяется с точностью до слагаемого 2kπ , где k — произвольное целое число, то вводится, главное значение аргумента , обозначаемое arg z и удовлетворяющее неравенствам:
Тогда оказывается справедливым равенство:
Если для комплексного числа z = x + i y нам известны его модуль r = | z | и его аргумент φ , то мы можем найти вещественную и мнимую части по формулам
![]() | (3) |
Если же комплексное число z = x + i y задано в алгебраической форме, т.е. нам известны числа x и y , то модуль этого числа, конечно же, определяется по формуле
![]() | (4) |
а аргумент определяется в соответствии со следующей Таблицей 1.
Для того, чтобы не загромождать запись, условимся, не оговаривая этого особо, символом k обозначать в Таблице 1 произвольное целое число.
Таблица 1. – Формулы для определения аргумента числа z = x + i y
| Расположение числа z | Знаки x и y | Главное значение аргумента | Аргумент | Примеры |
| Положительная вещественная полуось | 0 | φ = 2kπ | ![]() | |
| Первый квадрант | ![]() | ![]() | ![]() | |
| Положительная мнимая полуось | ![]() | ![]() | ![]() | |
| Второй квадрант | ![]() | ![]() | ![]() | |
| Отрицательная вещественная полуось | Положительная вещественная полуось | |||
| Знаки x и y | ||||
| Главное значение аргумента | 0 | |||
| Аргумент | φ = 2kπ | |||
| Примеры | ![]() |
| Расположение числа z | Первый квадрант |
| Знаки x и y | |
| Главное значение аргумента | ![]() |
| Аргумент | ![]() |
| Примеры | ![]() |
| Расположение числа z | Положительная мнимая полуось |
| Знаки x и y | |
| Главное значение аргумента | ![]() |
| Аргумент | ![]() |
| Примеры | ![]() |
| Расположение числа z | Второй квадрант |
| Знаки x и y | |
| Главное значение аргумента | ![]() |
| Аргумент | ![]() |
| Примеры | ![]() |
| Расположение числа z | Отрицательная вещественная полуось | ||||||||||
| Знаки x и y | Третий квадрант | ||||||||||
| Знаки x и y | Отрицательная мнимая полуось | ||||||||||
| Знаки x и y | Четвёртый квадрант | ||||||||||
| Знаки x и y | |||||||||||
| z = r (cos φ + i sin φ) , | (5) |
где r и φ — модуль и аргумент этого числа, соответственно, причем модуль удовлетворяет неравенству r > 0 .
Запись комплексного числа в форме (5) называют тригонометрической формой записи комплексного числа .
Видео:Изобразить область на комплексной плоскостиСкачать

Формула Эйлера. Экспоненциальная форма записи комплексного числа
В курсе «Теория функций комплексного переменного», который студенты изучают в высших учебных заведениях, доказывается важная формула, называемая формулой Эйлера :
| cos φ + i sin φ = e iφ . | (6) |
Из формулы Эйлера (6) и тригонометрической формы записи комплексного числа (5) вытекает, что любое отличное от нуля комплексное число z = x + i y может быть записано в виде
| z = r e iφ , | (7) |
где r и φ — модуль и аргумент этого числа, соответственно, причем модуль удовлетворяет неравенству r > 0 .
Запись комплексного числа в форме (7) называют экспоненциальной (показательной) формой записи комплексного числа .
Из формулы (7) вытекают, в частности, следующие равенства:
а из формул (4) и (6) следует, что модуль комплексного числа
или, что то же самое, числа e iφ , при любом значении φ равен 1.
Видео:4. Показательная форма комплексного числаСкачать

Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме
Экспоненциальная запись комплексного числа очень удобна для выполнения операций умножения, деления и возведения в натуральную степень комплексных чисел.
Действительно, умножение и деление двух произвольных комплексных чисел 

Таким образом, при перемножении комплексных чисел их модули перемножаются, а аргументы складываются.
При делении двух комплексных чисел модуль их частного равен частному их модулей, а аргумент частного равен разности аргументов делимого и делителя.
Возведение комплексного числа z = r e iφ в натуральную степень осуществляется по формуле
Другими словами, при возведении комплексного числа в степень, являющуюся натуральным числом, модуль числа возводится в эту степень, а аргумент умножается на показатель степени.
Видео:Комплексные числа. Тригонометрическая форма. Формула Муавра | Ботай со мной #040 | Борис Трушин !Скачать

Извлечение корня натуральной степени из комплексного числа
Пусть 
Корнем n — ой степени из числа z0 , где 
| z n = z0 . | (8) |
Для того, чтобы решить уравнение (8), перепишем его в виде
и заметим, что два комплексных числа, записанных в экспоненциальной форме, равны тогда и только тогда, когда их модули равны, а разность аргументов равна 2kπ , где k — произвольное целое число. По этой причине справедливы равенства
следствием которых являются равенства
![]() | (9) |
Из формул (9) вытекает, что уравнение (8) имеет n различных корней
![]() | (10) |
причем на комплексной плоскости концы радиус-векторов zk при k = 0 , . , n – 1 располагаются в вершинах правильного n — угольника, вписанного в окружность радиуса 
Замечание . В случае n = 2 уравнение (8) имеет два различных корня z1 и z2 , отличающихся знаком:
Пример 1 . Найти все корни уравнения
то по формуле (10) получаем:
Пример 2 . Решить уравнение
Решение . Поскольку дискриминант этого квадратного уравнения отрицателен, то вещественных корней оно не имеет. Для того, чтобы найти комплексные корни, выделим, как и в вещественном случае, полный квадрат:
Видео:Перевод комплексного числа из алгебраической формы в тригонометрическую, показательнуюСкачать

Как изобразить комплексное число с помощью вектора
VII .1. Формы записи комплексных чисел и действия над ними
Комплексным числом называется выражение вида z = x + iy , (7.1)
где x и y – действительные числа, а i так называемая мнимая единица. Соотношение для мнимой единицы
Если x =0, то число 0+ iy = iy называется чисто мнимым; если y =0, то число x + i ∙0= x отождествляется с действительным числом x , а это означает, что множество R всех действительных чисел является подмножеством множества C всех комплексных чисел, то есть 
Число x называется действительной частью комплексного числа z и обозначается x = Re z , а y – мнимой частью комплексного числа z и обозначается y = Im z .
Понятия «больше» и «меньше» для комплексных чисел не вводятся.
Числа z = x + iy и 
Всякое комплексное число z = x + iy можно изобразить точкой M ( x ; y ) плоскости x 0 y такой, что x = Re z , y = Im z . Верно и обратное: каждую точку M ( x ; y ) координатной плоскости можно рассматривать как образ комплексного числа z = x + iy (рис. 7.1).
Комплексное число z = x + iy можно задавать с помощью радиус-вектора 


Для комплексного числа z =0 аргумент не определен. Аргумент комплексного числа 

Алгебраической формой комплексного числа называется з апись числа z в виде z = x + iy.
Модуль r и аргумент φ можно рассматривать как полярные координаты вектора 
Равенство (7.3) есть тригонометрическая форма комплексного числа. Модуль r = |z| однозначно определяется по формуле
Аргумент определяется из формул:
При переходе от алгебраической формы комплексного числа к тригонометрической достаточно определить главное значение аргумента комплексного числа z , то есть считать φ= arg z . Знаки полученных значений cos φ и sin φ по формулам (7.5), дают возможность определить, какой координатной четверти принадлежит угол φ.
Используя формулу Эйлера
комплексное число 
где r =| z | — модуль комплексного числа, а угол 
Функция e i φ – периодическая с основным периодом 2 π, поэтому для записи комплексного числа в показательной форме по формуле 7.7 достаточно найти главное значение его аргумента, то есть считать φ = arg z .
Пример 7.1. Записать комплексные числа 
Решение. Для z 1 имеем 

Для действительного числа 
На множестве комплексны х чисел определен ряд операций.
Из равенства (7.9) следует, что геометрически комплексные числа вычитаются как векторы. При этом число z = z 1 – z 2 изображается вектором, соединяющим концы векторов 


Из (7.11) следует важнейшее соотношение i 2 = –1. Действительно,
Найдем произведение комплексных чисел 

Видно, что при умножении комплексных чисел в тригонометрической форме их модули перемножаются, а аргументы складываются. Это правило распространяется на любое конечное число множителей. Нетрудно видеть, что если есть n множителей и все они одинаковые, то частным случаем равенства (7.12) является формула возведения комплексного числа в натуральную степень:
(7.13) называется первой формулой Муавра.
Произведение двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:
4. Частным двух комплексных чисел z 1 и 


Пусть 
На практике при нахождении частного двух комплексных чисел удобно умножить числитель и знаменатель дроби 
Деление комплексных чисел осуществляется также и в тригонометрической форме, при этом имеет место формула:
Видно, что при делении комплексных чисел их модули делятся, а аргументы вычитаются соответственно.
Частное двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:
Пример 7.2. Найти сумму, разность, произведение и частное комплексных чисел 
Решение. По формуле (7.8) сумма заданных чисел равна 
Согласно формуле (7.9) разность заданных чисел равна 
Пользуясь формулой (7.11), вычислим их произведение
На основании формулы (7.14) вычислим их частное
Пример 7.3. Найти произведение и частное комплексных чисел 
Решение. Используя (7.4) и (7.5), получаем:
Аналогично, для z 2 можно записать:
По формулам (7.12) и (7.16) получим в тригонометрической форме:
Пользуясь формулами (7.14) и (7.17), получим в показательной форме:
5. Извлечение корня n -ой степени – операция, обратная возведению
в натуральную степень, определенному ранее формулой (7.13).
Корнем n -ой степени из комплексного числа z называется комплексное число ω, удовлетворяющее равенству ω n = z , то есть 
Пусть 



(7.18) называется второй формулой Муавра.
Видно, что для любого 
Пример 7.4. Найти все корни уравнения z 4 +16=0.
Решение. Запишем уравнение в виде z 4 =–16+0∙ i . Отсюда по формуле (7.18) получим:
Сформулируем несколько иначе основную теорему алгебры 3.2 над полем комплексных чисел .
Теорема 7.1 (основная теорема алгебры). Для всякого многочлена с комплексными коэффициентами
Приведем еще одну теорему, имеющую место над множеством комплексных чисел.
Теорема 7.2. Если многочлен Pn ( x ) с действительными коэффициентами имеет комплексный корень a + ib , то он имеет и сопряженный корень a – ib
В разложение многочлена 

Таким образом, произведение линейных множителей, соответствующих сопряженным корням, можно заменить квадратным трехчленом с действительными коэффициентами, а соответствующее квадратное уравнение будет иметь отрицательный дискриминант.
Видео:Аргумент комплексного числа. Часть 1Скачать

Алгебра и начала математического анализа. 11 класс
Конспект урока
Алгебра и начала математического анализа, 11 класс
Урок №39. Геометрическая интерпретация комплексного числа.
Перечень вопросов, рассматриваемых в теме
- изображение комплексного числа на плоскости- точками;
- изображение комплексного числа на плоскости- векторами;
3) определение модуля комплексного числа.
Глоссарий по теме:
а) Комплексные числа изображают точками плоскости по следующему правилу: a + bi = M (a; b)
б) Комплексное число можно изобразить вектором, который имеет начало в точке О и конец в данной точке
Длина радиус-вектора, изображающего комплексное число z=a+bi, называется модулем этого комплексного числа.
Модуль любого ненулевого комплексного числа есть положительное число. Модули комплексно сопряженных чисел равны. Модуль произведения/частного двух комплексных чисел равен произведению/частному модулей каждого из чисел.
Модуль вычисляется по формуле:
То есть модуль есть сумма квадратов действительной и мнимой частей заданного числа.
Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.
Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2017.
Теоретический материал для самостоятельного изучения
Геометрическое изображение комплексных чисел.
а) Комплексные числа изображаются точками плоскости по следующему правилу: a + bi = M (a; b) (рис.1).
б) Комплексное число можно изобразить вектором, который имеет начало в точке О и конец в данной точке (рис.2).
Пример. Постройте точки, изображающие комплексные числа: 1; — i; — 1 + i; 2 – 3i (рис.3).
Модуль комплексного числа
Как отмечалось выше, комплексное число также можно изображать радиус-вектором 
Длина радиус-вектора, изображающего комплексное число z=a+bi, называется модулем этого комплексного числа.
Модуль любого ненулевого комплексного числа есть положительное число. Модули комплексно сопряженных чисел равны. Модуль произведения/частного двух комплексных чисел равен произведению/частному модулей каждого из чисел.
Модуль вычисляется по формуле:
То есть модуль есть сумма квадратов действительной и мнимой частей заданного числа.
Иногда еще модуль комплексного числа обозначается как r или ρ.
Разбор решения заданий тренировочного модуля
№1. Тип задания: единичный выбор
Найдите модуль комплексного числа z=5-3i
- 4
- 5
Решим данное задание, используя определение модуля.
Т.к. Re z=5, Im z= -3, то искомое значение
Верный ответ: 2.
№2. Тип задания: рисование.
Изобразите вектором на комплексной плоскости точку z=2+3i
Разобьем z=2+3i на две части: z1=2 и z2= 3i. Отметим на плоскости точки О и А, соединим их:
🔍 Видео
Математика без Ху!ни. Комплексные числа, часть 1. Введение.Скачать

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

1.2 Комплексные числа и их представление векторами на комплексной плоскостиСкачать

Сложение, вычитание, умножение и деление комплексных чисел | Высшая математикаСкачать

Александр Чирцов про комплексные числа и вектораСкачать

10 класс, 33 урок, Комплексные числа и координатная плоскостьСкачать

11 класс, 10 урок, Извлечение корней из комплексных чиселСкачать

✓ Комплексные числа. Введение | Ботай со мной #039 | Борис ТрушинСкачать

Алгебраическая форма записи комплексных чисел
































































