Как из окружности сделать шестиугольник

Правильный шестиугольник и его свойства

Как из окружности сделать шестиугольникТему многоугольников проходят в школьной программе, но не уделяют ей достаточного внимания. А между тем она интересна, и особенно это касается правильного шестиугольника или гексагона — ведь эту форму имеют многие природные объекты. К ним относятся пчелиные соты и многое другое. Эта форма очень хорошо применяется на практике.

Содержание
  1. Определение и построение
  2. Свойства простые и интересные
  3. Описанная окружность и возможность построения
  4. Вписанная окружность
  5. Периметр и площадь
  6. Занимательные построения
  7. От теории к практике
  8. Как сделать шестиугольник
  9. Как нарисовать шестиугольник
  10. Правильный шестиугольник и его свойства
  11. Определение и построение
  12. Свойства простые и интересные
  13. Описанная окружность и возможность построения
  14. Вписанная окружность
  15. Периметр и площадь
  16. Занимательные построения
  17. От теории к практике
  18. Правильный шестиугольник как построить без циркуля
  19. Способ вычерчивания шестиугольника циркулем, линейкой
  20. Как из круга сделать шестиугольник
  21. Способ вычерчивания шестиугольника без циркуля
  22. Popular
  23. Основы черчения
  24. Строительное
  25. Машиностроительное
  26. Магические шестиугольники — метод сборки 1
  27. Как сшить друг с другом шестиугольные детали в пэчворке
  28. This website is using a security service to protect itself from online attacks.
  29. Как начертить ровный шестиугольник
  30. Инструкция
  31. Свойства простые и интересные
  32. Описанная окружность и возможность построения
  33. Зачем уметь строить эту геометрическую фигуру?
  34. Определение и построение
  35. Построение правильного шестиугольника и его свойства: углы, площадь и радиусы окружностей; интересные факты
  36. Определение и построение
  37. Свойства простые и интересные
  38. Описанная окружность и возможность построения
  39. Вписанная окружность
  40. Периметр и площадь
  41. Занимательные построения
  42. От теории к практике
  43. Через сторону
  44. Через радиус описанной окружности
  45. Свойства правильного шестиугольника
  46. Деление окружности на шесть равных частей и построение правильного вписанного шестиугольника
  47. Урок по геометрии «Построение правильных многоугольников» 9 класс
  48. Построение правильных многоугольников
  49. Задача 2
  50. Правильный шестиугольник ≪ Scisne?
  51. Шестиугольник и его свойства
  52. Правильный шестиугольник
  53. Свойства правильного шестиугольника
  54. Формулы для правильного шестиугольника
  55. Задача
  56. 2.4.2 Построение правильных многоугольников по данной стороне
  57. 2.4.3 Построение правильных многоугольников, описанных около окружности
  58. 🔥 Видео

Видео:ПОСТРОИТЬ ПРАВИЛЬНЫЙ ПЯТИУГОЛЬНИК [construction a regular pentagon]Скачать

ПОСТРОИТЬ ПРАВИЛЬНЫЙ ПЯТИУГОЛЬНИК [construction a regular pentagon]

Определение и построение

Правильным шестиугольником называется плоскостная фигура, имеющая шесть равных по длине сторон и столько же равных углов.

Если вспомнить формулу суммы углов многоугольника

то получается, что в этой фигуре она равна 720°. Ну а поскольку все углы фигуры равны, нетрудно посчитать, что каждый из них равен 120°.

Начертить шестиугольник очень просто, для этого достаточно циркуля и линейки.

Пошаговая инструкция будет выглядеть так:

  1. Как из окружности сделать шестиугольникчертится прямая линия и на ней ставится точка;
  2. из этой точки строится окружность (она является ее центром);
  3. из мест пересечения окружности с линией строятся еще две таких же, они должны сойтись в центре.
  4. после этого отрезками последовательно соединяются все точки на первой окружности.

При желании можно обойтись и без линии, начертив пять равных по радиусу окружностей.

Полученная таким образом фигура будет правильным шестиугольником, и это можно доказать ниже.

Видео:Как построить правильный шестиугольник.Скачать

Как построить правильный шестиугольник.

Свойства простые и интересные

Чтобы понять свойства правильного шестиугольника, его имеет смысл разбить на шесть треугольников:

Это поможет в дальнейшем нагляднее отобразить его свойства, главные из которых:

  1. диаметр описанной окружности;
  2. диаметр вписанной окружности;
  3. площадь;
  4. периметр.

Описанная окружность и возможность построения

Как из окружности сделать шестиугольникВокруг гексагона можно описать окружность, и притом только одну. Поскольку фигура эта правильная, то можно поступить довольно просто: от двух соседних углов провести внутрь биссектрисы. Они пересекутся в точке О, и образуют вместе со стороной между ними треугольник.

Углы между стороной гексагона и биссектрисами будут по 60°, поэтому можно определенно сказать, что треугольник, к примеру, АОВ — равнобедренный. А поскольку третий угол тоже будет равен 60°, то он еще и равносторонний. Отсюда следует, что отрезки ОА и ОВ равны, значит, могут служить радиусом окружности.

После этого можно перейти к следующей стороне, и из угла при точке С тоже вывести биссектрису. Получится очередной равносторонний треугольник, причем сторона АВ будет общей сразу для двух, а ОС — очередным радиусом, через который идет та же окружность. Всего таких треугольников получится шесть, и у них будет общая вершина в точке О. Получается, что описать окружность будет можно, и она всего одна, а ее радиус равен стороне гексагона:

R=а.

Именно поэтому и возможно построение этой фигуры с помощью циркуля и линейки.

Ну а площадь этой окружности будет стандартная:

S=πR²

Вписанная окружность

Как из окружности сделать шестиугольникЦентр описанной окружности совпадет с центром вписанной. Чтобы в этом убедиться, можно провести из точки О перпендикуляры к сторонам шестиугольника. Они будут являться высотами тех треугольников, из которых составлен гексагон. А в равнобедренном треугольнике высота является медианой по отношению к стороне, на которую она опирается. Таким образом, эта высота не что иное, как серединный перпендикуляр, являющийся радиусом вписанной окружности.

Высота равностороннего треугольника вычисляется просто:

h²=а²-(а/2)²= а²3/4, h=а(√3)/2

А поскольку R=a и r=h, то получается, что

r=R(√3)/2.

Таким образом, вписанная окружность проходит через центры сторон правильного шестиугольника.

Ее площадь будет составлять:

S=3πa²/4,

то есть три четверти от описанной.

Периметр и площадь

С периметром все ясно, это сумма длин сторон:

P=6а, или P=6R

А вот площадь будет равна сумме всех шести треугольников, на которые можно разбить гексагон. Поскольку площадь треугольника вычисляется как половина произведения основания на высоту, то:

S=6(а/2)(а(√3)/2)= 6а²(√3)/4=3а²(√3)/2 или

S=3R²(√3)/2

Желающим вычислять эту площадь через радиус вписанной окружности можно сделать и так:

Занимательные построения

В гексагон можно вписать треугольник, стороны которого будут соединять вершины через одну:

Всего их получится два, и их наложение друг на друга даст звезду Давида. Каждый из этих треугольников — равносторонний. В этом нетрудно убедиться. Если посмотреть на сторону АС, то она принадлежит сразу двум треугольникам — ВАС и АЕС. Если в первом из них АВ=ВС, а угол между ними 120°, то каждый из оставшихся будет 30°. Отсюда можно сделать закономерные выводы:

  1. Высота АВС из вершины В будет равна половине стороны шестиугольника, поскольку sin30°=1/2. Желающим убедиться в этом можно посоветовать пересчитать по теореме Пифагора, она здесь подходит как нельзя лучше.
  2. Сторона АС будет равна двум радиусам вписанной окружности, что опять-таки вычисляется по той же теореме. То есть АС=2(a(√3)/2)=а(√3).
  3. Треугольники АВС, СДЕ и АЕF равны по двум сторонам и углу между ними, и отсюда вытекает равенство сторон АС, СЕ и ЕА.

Пересекаясь друг с другом, треугольники образуют новый гексагон, и он тоже правильный. Доказывается это просто:

  1. Как из окружности сделать шестиугольникУгол АВF равен углу ВАС. Таким образом, получившийся треугольник с основанием АВ и безымянной вершиной напротив него — равнобедренный.
  2. Все такие же треугольники, основанием которых служит сторона гексагона, равны по стороне и прилегающей к ней углам.
  3. Треугольники при вершинах гексагона являются равносторонними и равными, что вытекает из предыдущего пункта.
  4. Углы новообразованного шестиугольника равняются 360-120-60-60=120°.

Таким образом, фигура отвечает признакам правильного шестиугольника — у нее шесть равных сторон и углов. Из равенства треугольников при вершинах легко вывести длину стороны нового гексагона:

d=а(√3)/3

Она же будет радиусом описанной вокруг него окружности. Радиус вписанной будет вдвое меньше стороны большого шестиугольника, что было доказано при рассмотрении треугольника АВС. Его высота составляет как раз половину стороны, следовательно, вторая половина — это радиус вписанной в маленький гексагон окружности:

r₂=а/2

Площадь нового шестиугольника можно посчитать так:

Получается, что площадь гексагона внутри звезды Давида в три раза меньше, чем у большого, в который вписана звезда.

Видео:Геометрия - Построение шестиугольникаСкачать

Геометрия - Построение шестиугольника

От теории к практике

Как из окружности сделать шестиугольникСвойства шестиугольника очень активно используются как в природе, так и в различных областях деятельности человека. В первую очередь это касается болтов и гаек — шляпки первых и вторые представляют собой ничто иное, как правильный шестигранник, если не брать в расчет фаски. Размер гаечных ключей соответствует диаметру вписанной окружности — то есть расстоянию между противоположными гранями.

Нашла свое применение и гексагональная плитка. Она распространена куда меньше четырехугольной, но класть ее удобнее: в одной точке смыкаются три плитки, а не четыре. Композиции могут получаться очень интересные:

Выпускается и бетонная плитка для мощения.

Распространенность гексагона в природе объясняется просто. Таким образом, проще всего плотно уместить круги и шары на плоскости, если у них одинаковый диаметр. Из-за этого у пчелиных сот такая форма.

Видео:Построение пятиугольника циркулем и линейкойСкачать

Построение пятиугольника циркулем и линейкой

Как сделать шестиугольник

Видео:Как построить шестиугольник вписанный в окружностьСкачать

Как построить шестиугольник вписанный в окружность

Как нарисовать шестиугольник

wikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали, в том числе анонимно, 50 человек(а).

Количество просмотров этой статьи: 215 263.

В широком смысле шестиугольник — это многоугольник с шестью углами. У правильного же шестиугольника углы и стороны равны. Нарисовать такой шестиугольник можно при помощи рулетки и транспортира, грубый шестиугольник — при помощи круглого предмета и линейки или еще более грубый шестиугольник — при помощи интуиции и карандаша. Если вы хотите знать, как нарисовать шестиугольник различными способами, просто читайте далее.

Видео:Шестиугольник - гексагон за 1 минуту ! Без циркуля и заморочек ! Сможет даже ребёнок .Скачать

Шестиугольник - гексагон за 1 минуту ! Без циркуля и заморочек !  Сможет даже ребёнок .

Правильный шестиугольник и его свойства

Как из окружности сделать шестиугольник

Тему многоугольников проходят в школьной программе, но не уделяют ей достаточного внимания. А между тем она интересна, и особенно это касается правильного шестиугольника или гексагона — ведь эту форму имеют многие природные объекты. К ним относятся пчелиные соты и многое другое. Эта форма очень хорошо применяется на практике.

  • Определение и построение
  • Свойства простые и интересные
  • Описанная окружность и возможность построения
  • Вписанная окружность
  • Периметр и площадь
  • Занимательные построения
  • От теории к практике

    Определение и построение

    Правильным шестиугольником называется плоскостная фигура, имеющая шесть равных по длине сторон и столько же равных углов.

    Если вспомнить формулу суммы углов многоугольника

    то получается, что в этой фигуре она равна 720°. Ну а поскольку все углы фигуры равны, нетрудно посчитать, что каждый из них равен 120°.

    Начертить шестиугольник очень просто, для этого достаточно циркуля и линейки.

    Пошаговая инструкция будет выглядеть так:

    Как из окружности сделать шестиугольник

    1. чертится прямая линия и на ней ставится точка;
    2. из этой точки строится окружность (она является ее центром);
    3. из мест пересечения окружности с линией строятся еще две таких же, они должны сойтись в центре.
    4. после этого отрезками последовательно соединяются все точки на первой окружности.

    При желании можно обойтись и без линии, начертив пять равных по радиусу окружностей.

    Полученная таким образом фигура будет правильным шестиугольником, и это можно доказать ниже.

    Свойства простые и интересные

    Чтобы понять свойства правильного шестиугольника, его имеет смысл разбить на шесть треугольников:

    Это поможет в дальнейшем нагляднее отобразить его свойства, главные из которых:

    1. диаметр описанной окружности;
    2. диаметр вписанной окружности;
    3. площадь;
    4. периметр.

    Описанная окружность и возможность построения

    Как из окружности сделать шестиугольник

    Вокруг гексагона можно описать окружность, и притом только одну. Поскольку фигура эта правильная, то можно поступить довольно просто: от двух соседних углов провести внутрь биссектрисы. Они пересекутся в точке О, и образуют вместе со стороной между ними треугольник.

    Углы между стороной гексагона и биссектрисами будут по 60°, поэтому можно определенно сказать, что треугольник, к примеру, АОВ — равнобедренный. А поскольку третий угол тоже будет равен 60°, то он еще и равносторонний. Отсюда следует, что отрезки ОА и ОВ равны, значит, могут служить радиусом окружности.

    После этого можно перейти к следующей стороне, и из угла при точке С тоже вывести биссектрису. Получится очередной равносторонний треугольник, причем сторона АВ будет общей сразу для двух, а ОС — очередным радиусом, через который идет та же окружность. Всего таких треугольников получится шесть, и у них будет общая вершина в точке О. Получается, что описать окружность будет можно, и она всего одна, а ее радиус равен стороне гексагона:

    R=а.

    Именно поэтому и возможно построение этой фигуры с помощью циркуля и линейки.

    Ну а площадь этой окружности будет стандартная:

    S=πR²

    Вписанная окружность

    Как из окружности сделать шестиугольник

    Центр описанной окружности совпадет с центром вписанной. Чтобы в этом убедиться, можно провести из точки О перпендикуляры к сторонам шестиугольника. Они будут являться высотами тех треугольников, из которых составлен гексагон. А в равнобедренном треугольнике высота является медианой по отношению к стороне, на которую она опирается. Таким образом, эта высота не что иное, как серединный перпендикуляр, являющийся радиусом вписанной окружности.

    Высота равностороннего треугольника вычисляется просто:

    h²=а²-(а/2)²= а²3/4, h=а(√3)/2

    А поскольку R=a и r=h, то получается, что

    r=R(√3)/2.

    Таким образом, вписанная окружность проходит через центры сторон правильного шестиугольника.

    Ее площадь будет составлять:

    S=3πa²/4,

    то есть три четверти от описанной.

    Периметр и площадь

    С периметром все ясно, это сумма длин сторон:

    P=6а, или P=6R

    А вот площадь будет равна сумме всех шести треугольников, на которые можно разбить гексагон. Поскольку площадь треугольника вычисляется как половина произведения основания на высоту, то:

    S=6(а/2)(а(√3)/2)= 6а²(√3)/4=3а²(√3)/2 или

    S=3R²(√3)/2

    Желающим вычислять эту площадь через радиус вписанной окружности можно сделать и так:

    Занимательные построения

    В гексагон можно вписать треугольник, стороны которого будут соединять вершины через одну:

    Всего их получится два, и их наложение друг на друга даст звезду Давида. Каждый из этих треугольников — равносторонний. В этом нетрудно убедиться. Если посмотреть на сторону АС, то она принадлежит сразу двум треугольникам — ВАС и АЕС. Если в первом из них АВ=ВС, а угол между ними 120°, то каждый из оставшихся будет 30°. Отсюда можно сделать закономерные выводы:

    1. Высота АВС из вершины В будет равна половине стороны шестиугольника, поскольку sin30°=1/2. Желающим убедиться в этом можно посоветовать пересчитать по теореме Пифагора, она здесь подходит как нельзя лучше.
    2. Сторона АС будет равна двум радиусам вписанной окружности, что опять-таки вычисляется по той же теореме. То есть АС=2(a(√3)/2)=а(√3).
    3. Треугольники АВС, СДЕ и АЕF равны по двум сторонам и углу между ними, и отсюда вытекает равенство сторон АС, СЕ и ЕА.

    Пересекаясь друг с другом, треугольники образуют новый гексагон, и он тоже правильный. Доказывается это просто:

    Как из окружности сделать шестиугольник

    1. Угол АВF равен углу ВАС. Таким образом, получившийся треугольник с основанием АВ и безымянной вершиной напротив него — равнобедренный.
    2. Все такие же треугольники, основанием которых служит сторона гексагона, равны по стороне и прилегающей к ней углам.
    3. Треугольники при вершинах гексагона являются равносторонними и равными, что вытекает из предыдущего пункта.
    4. Углы новообразованного шестиугольника равняются 360-120-60-60=120°.

    Таким образом, фигура отвечает признакам правильного шестиугольника — у нее шесть равных сторон и углов. Из равенства треугольников при вершинах легко вывести длину стороны нового гексагона:

    d=а(√3)/3

    Она же будет радиусом описанной вокруг него окружности. Радиус вписанной будет вдвое меньше стороны большого шестиугольника, что было доказано при рассмотрении треугольника АВС. Его высота составляет как раз половину стороны, следовательно, вторая половина — это радиус вписанной в маленький гексагон окружности:

    r₂=а/2

    Площадь нового шестиугольника можно посчитать так:

    Получается, что площадь гексагона внутри звезды Давида в три раза меньше, чем у большого, в который вписана звезда.

    От теории к практике

    Как из окружности сделать шестиугольник

    Свойства шестиугольника очень активно используются как в природе, так и в различных областях деятельности человека. В первую очередь это касается болтов и гаек — шляпки первых и вторые представляют собой ничто иное, как правильный шестигранник, если не брать в расчет фаски. Размер гаечных ключей соответствует диаметру вписанной окружности — то есть расстоянию между противоположными гранями.

    Нашла свое применение и гексагональная плитка. Она распространена куда меньше четырехугольной, но класть ее удобнее: в одной точке смыкаются три плитки, а не четыре. Композиции могут получаться очень интересные:

    Выпускается и бетонная плитка для мощения.

    Распространенность гексагона в природе объясняется просто. Таким образом, проще всего плотно уместить круги и шары на плоскости, если у них одинаковый диаметр. Из-за этого у пчелиных сот такая форма.

    Автор статьи Свечкарёв Владимир Фёдорович

    Видео:Построение правильного шестиугольника при помощи циркуля и линейкиСкачать

    Построение правильного шестиугольника при помощи циркуля и линейки

    Правильный шестиугольник как построить без циркуля

    Построение шестигранника может производиться несколькими способами. Удобнее всего использовать стандартный набор чертежных инструментов: циркуль, линейку. Однако, в отсутствие циркуля, фигура этого типа может быть начерчена с помощью рейсшины, угольника заводского изготовления с углами 90/60/30°.

    Как из окружности сделать шестиугольник

    Шестигранники применяются для откручивания и закручивания болтов при ремонте и сборке мебели.

    В обоих случаях особенностью построения является элементарное знание основ геометрии. В правильном шестиугольнике длина его стороны всегда равна радиусу окружности, описанной вокруг него, противоположные стороны параллельны, грани сопрягаются под углом 60°.

    Способ вычерчивания шестиугольника циркулем, линейкой

    Чтобы построить шестигранник при наличии циркуля, достаточно вычертить окружность, найти на ее дуге 6 точек, соединив их отрезками. Для этого достаточно настроить циркуль один раз, отложив на нем значение стороны многогранника. Линейка потребуется для строительства вспомогательных, основных линий.

    Метод выглядит следующим образом:

    Первый способ вычерчивания шестиугольника циркулем: 1,2,3,4,5,6 — углы, 0 — центр, D — радиус шестигранника.

    • циркулем вычерчивается окружность — радиус является размером стороны;
    • по линейке проводится радиус — точки пересечения этого отрезка будут углами многоугольника;
    • находятся два угла многоугольника — циркуль переставляется в одну из точек пересечения отрезка (проведенный на предыдущем этапе диаметр), на дуге делаются отметки;
    • находятся оставшиеся два угла — циркуль перемещается в противоположную точку пересечения отрезка с дугой окружности, создаются отметки пересечения на второй стороне окружности.

    Построение правильного шестигранника завершается соединением получившихся углов по линейке. Это самый точный способ, требующий минимального количества чертежного инструмента. При значительном размере сторон (например, крой листового металла, деревянных заготовок) можно использовать шнур с карандашом. Один край шнура крепится к карандашу/маркеру, второй неподвижно фиксируется в центре окружности, затем в точках пересечения диаметра с дугой окружности.

    Построение занимает минимальное количество времени, точность целиком зависит от заточки карандаша, наличия фиксатора на циркуле.

    Как из круга сделать шестиугольник

    Построение шестигранника может производиться несколькими способами. Удобнее всего использовать стандартный набор чертежных инструментов: циркуль, линейку. Однако, в отсутствие циркуля, фигура этого типа может быть начерчена с помощью рейсшины, угольника заводского изготовления с углами 90/60/30°.

    Шестигранники применяются для откручивания и закручивания болтов при ремонте и сборке мебели.

    В обоих случаях особенностью построения является элементарное знание основ геометрии. В правильном шестиугольнике длина его стороны всегда равна радиусу окружности, описанной вокруг него, противоположные стороны параллельны, грани сопрягаются под углом 60°.

    Способ вычерчивания шестиугольника без циркуля

    Построение правильного шестигранника без циркуля требует обязательного наличия рейсшины — специального инструмента в виде линейки, внутри корпуса которой расположен массивный вал с резиновыми элементами, препятствующими проскальзыванию. Он создан для быстрого изготовления параллельных прямых, обеспечивая высокую точность построений. Качество вычерчивания в данном методе полностью зависит от точности угла 60° в угольнике заводского изготовления, градуирования шкалы линейки.

    Способ построения выглядит следующим образом:

    Второй способ вычерчивания шестиугольника циркулем: 1,2,3,4,5,6 — углы, 0 — центр, D — радиус шестигранника.

    • к одной стороне отрезка прикладывается угольник — короткая сторона совмещена с линией, угол 60° примыкает к концу отрезка изнутри, по гипотенузе угольника проводится линия произвольного размера, который корректируется впоследствии по шкале линейки;
    • на листе/заготовке вычерчивается линия — длина ее равна двум размерам стороны многоугольника, края автоматически становятся центрами многогранника;
    • операция повторяется при развороте угольника — угол 60° перемещается к противоположной стороне отрезка, центром вращения является длинный катет угольника;
    • разворот угольника — теперь центром вращения становится короткий катет угольника, вычерчиваются еще две грани;
    • уточнение размеров сторон — на четырех получившихся сторонах многоугольника по линейке откладывается их точный размер;
    • строительство двух оставшихся сторон — они расположены параллельно линии, с которой было начато черчение, проводятся по линейке, затем уточняется их размер;
    • контроль параллельности — шкала рейсшины совмещается с линией, от которой началось построение фигуры, затем инструмент перемещается вверх/вниз для удостоверения параллельности двух противоположных граней между собой, с этим отрезком

    Шестигранник в этом случае вычерчивается дольше, чем в первом способе. Однако так можно построить необходимую фигуру, в отсутствие циркуля, угольником. Технология основана на параллельности противоположных сторон правильного шестиугольника, одинаковых внутренних углах 60°.

    Промышленность выпускает угольники как с острыми углами, удобными для данного метода, так и со скругленными.

    Третий способ вычерчивания шестиугольника циркулем: a — диаметр, b — сторона шестигранника.

    В последнем случае удобнее несколько изменить технологию:

    • после вычерчивания центрального отрезка по нему выравнивается рейсшина;
    • инструмент откатывается вниз на произвольную величину;
    • короткая гипотенуза угольника совмещается с линейкой рейсшины, а не с центральным отрезком;
    • скругленный край инструмента не участвует в построении, линия проводится по цельной части гипотенузы.

    Операция повторяется с противоположной стороны отрезка, после чего рейсшина разворачивается на 180°, опять совмещается с центральной линией, откатывается вверх для построения двух других сторон многогранника.

    Это стандартные способы вычерчивания равностороннего многоугольника с шестью углами, гранями. Они удобны для кроя заготовок любых размеров из разных материалов, в стандартном черчении на ватмане. Обе методики имеют исключительно прикладное значение, так как в профессиональных графических редакторах (AutoCAD, Компас-3D) подобные фигуры создаются автоматически заданием нужных параметров.

    Основы черчения

    Строительное

    Машиностроительное

    Построение вписанного в окружность правильного шестиуголь­ника. Построение шестиугольника основано на том, что сторона его равна радиусу описанной окружности. Поэтому для построения доста­точно разделить окружность на шесть равных частей и соединить най­денные точки между собой (фиг. 60, а).

    Как из окружности сделать шестиугольник

    Правильный шестиугольник можно построить, пользуясь рейсшиной и угольником 30X60°. Для выполнения этого построения принимаем горизонтальный диаметр окружности за биссектрису углов 1 и 4 (фиг. 60, б), строим стороны 1 —6, 4—3, 4—5 и 7—2, после чего прово­дим стороны 5—6 и 3—2.

    Построение вписанного в окружность равностороннего треуголь­ника. Вершины такого треугольника можно построить с помощью циркуля и угольника с углами в 30 и 60° или только одного цир­куля.

    Рассмотрим два способа построения вписанного в окружность рав­ностороннего треугольника.

    Первый способ (фиг. 61,a) основан на том, что все три угла треугольника 7, 2, 3 содержат по 60°, а вертикальная прямая, прове­дённая через точку 7, является одновременно высотой и биссектрисой угла 1. Так как угол 0—1—2 равен 30°, то для нахождения стороны

    Как из окружности сделать шестиугольник

    1—2 достаточно построить по точке 1 и стороне 0—1 угол в 30°. Для этого устанавливаем рейсшину и угольник так, как это показано на фигуре, проводим линию 1—2, которая будет одной из сторон искомого треугольника. Чтобы построить сторону 2—3, устанавливаем рейсшину в положение, показанное штриховыми линиями, и через точку 2 прово­дим прямую, которая определит третью вершину треугольника.

    Магические шестиугольники — метод сборки 1

    Как из окружности сделать шестиугольник

    фото сумки — с сайта handmadiya.com, все остальные фото, если не оговорено иное — мои
    Я обещала одной из читательниц канала рассказать, как сшивать между собой шестиугольные детали. Таких способов несколько (я знаю четыре способа) и сегодня я хочу рассказать о, наверное самом древнем из них. И заодно покажу как шить вот такую симпатичную сумку.

    Сумка шьется из шестиугольных деталей, собранных в определенной последовательности на плоскости.

    Всего на сумку нужно выкроить и собрать между собой 28 шестиугольников: по 10 на каждую сторону, 8 — на дно и бока. Плюс еще, как можно увидеть, 2 четырехугольника — параллелограмма (если я опять не ошиблась в названии геометрической фигуры) по бокам для придания сумке обьема. А вот как собрать между собой шестиугольники (а также четырехугольники с косыми углами) я сейчас расскажу.

    Как сшить друг с другом шестиугольные детали в пэчворке

    вот это уже мои фото, не судите строго

    Для работы нам потребуются лоскуты ткани и нетканый материал для шаблонов. Мне повезло — у меня есть отрез флизелина фирмы Freidenberg, они выпускают их самых разных артикулов, вот есть и такой, называется растр, с нанесенной на него разметкой-сеткой.

    Такой флизелин бывает с прямой разметкой, квадратами и с косой, треугольниками по 60 градусов. Черный материал под флизелином — это так называемая «бумага для заморозки». тоже очень ценная вещь. И то и другое, насколько я знаю. можно купить в магазинах сети»Швейный мир» или в интернет магазинах.

    Я свои шестиугольники создавала с целью сделать чехол для смартфона. Ну и заодно — сделать фото и наконец показать: как их сшивают между собой. Таким же самым способом сшивали шестиугольники и 300 лет назад, в семьях освоителей Дикого запада, хотя им, конечно, приходилось обходиться без фрейденберговского флизелина.

    Итак, я обвела смартфон по краям и вырезала из флизелина заготовку, размерами больше, чем обведенный смартфон, По размеченным линиям обвела и определила шестиугольные детали — семь целых и одну фрагментарную.

    Следующий этап — простым клеем приклеиваю заготовку из флизелина с разметкой на бумагу для заморозки, Это такая бумага типа пергамента для запекания или плотной кальки (если калька вообще бывает плотной).

    Но на одной стороне у нее — тонкая пленка. Бумагу для заморозки уже наверно давным-давно не используют по прямому назначению, а все больше для рукоделия.

    Шестиугольники нумерую в том порядке, в каком они были расположены изначально и будут лежать на чехле, и вырезаю из заготовки.

    Еще этап — нам нужно обернуть шестиугольники тканью. Кстати, если у вас нет флизелина и бумаги для заморозки — можно обойтись просто ватманом или любой другой плотной бумагой. Но флизелин и бумага для заморозки удобнее и вам сейчас покажу чем именно.

    Все шестиугольники раскладываю на лоскуты ткани. Детали я решила делать из клетчатой ткани разных видов. Накладывать шестиугольную заготовку на ткань нужно таким образом, чтобы по краям оставалось достаточно много ткани (не меньше сантиметра — полутора). Эту ткань мы будем загибать с лицевой стороны на изнаночную.

    У меня ткань без ярко выраженных лица и изнанки, поэтому мне было все равно к какой стороне прикладывать заготовку, Но если вы будете шить изделия из шестиугольников, то знайте что шаблон-заготовка должен лежать на изнаночной стороне лоскута и края ткани должны быть отвернуты с лицевой стороны на изнаночную и на шаблон.

    Далее . На шаблон ставлю на несколько минут горячий утюг. Правильно это называется — заутюжить, или как? В общем, в результате высокой температуры пластиковый слой бумаги для заморозки расплавляется и шаблон хорошо закрепляется на ткани, Но не «намертво» — после того, как детали сшиты между собой, шаблоны потихоньку извлекаются из шестиугольников и их можно еще несколько раз использовать таким же образом.

    Вырезанный из ткани шестиугольник с флизелиновой (или из ватмана) заготовкой-шаблоном в центре я кладу на гладильную доску тканью вниз, шаблоном наверх, Края ткани я заворачиваю на шаблон и фиксирую горячим утюгом. Потом я ниткой с иголкой прокладываю строчку по краю завернутой ткани и еще раз заутюживаю, чтобы деталь стала более плоской.

    Таким же образом я делаю все остальные заготовки — обтягиваю тканью шестиугольники и фиксирую края ткани ручной стежкой. Детали складываю вместе в том порядке, в каком они будут лежать на чехле смартфона. Вот как то так. Теперь все эти шестиугольники надо сшить между собой. Но как?

    Беру два шестиугольника, складываю между собой лицом к лицу и прошиваю мелкими стежками по краям деталей. Нужно захватывать буквально по миллиметру от края. Нитку берите крепкую и или в цвет детали или нейтрального цвета — серого, болотно-зеленого, светло-синего. Такие цвета, как показала практика, незаметны на шве, даже если он вылезет наружу.

    Вот так выглядят две сшитые между собой заготовки с изнаночной стороны. Шва не видно.

    А вот так — с лицей стороны. Я уже заутюжила шов, чтобы заготовки легли плоско. Шва не видно. Маленькая хитрость — когда будете шить — не шейте через край, а только мелкими стежками «вперед иголку» и подтягивайте нитку, то есть она должна быть прочной чтобы не лопнуть в самый ответственный момент.

    Ну вот. осталось вам рассказать, как вшить третью деталь между двумя.

    This website is using a security service to protect itself from online attacks.

    This process is automatic, you will be redirected to the requested URL once the validation process is complete.

    В широком смысле шестиугольник — это многоугольник с шестью углами. У правильного же шестиугольника углы и стороны равны. Нарисовать такой шестиугольник можно при помощи рулетки и транспортира, грубый шестиугольник — при помощи круглого предмета и линейки или еще более грубый шестиугольник — при помощи интуиции и карандаша. Если вы хотите знать, как нарисовать шестиугольник различными способами, просто читайте далее.

    Есть ли поблизости от Вас карандаш? Взгляните-ка на его сечение – оно представляет собой правильный шестиугольник или, как его еще называют, гексагон. Такую форму имеет также сечение гайки, поле гексагональных шахмат, кристаллическая решетка некоторых сложных молекул углерода (к примеру, графит), снежинка, пчелиные соты и другие объекты. Гигантский правильный шестиугольник был недавно обнаружен в атмосфере Сатурна. Не кажется ли странным столь частое использование природой для своих творений конструкций именно этой формы? Давайте рассмотрим эту фигуру поподробнее.

    • Длина его сторон соответствует радиусу описанной окружности. Из всех геометрических фигур это свойство имеет лишь правильный шестиугольник.
    • Углы равны между собой, и величина каждого составляет 120°.
    • Периметр гексагона можно найти по формуле Р=6*R, если известен радиус описанной вокруг него окружности, или Р=4*√(3)*r, если окружность в него вписана. R и r – радиусы описанной и вписанной окружности.
    • Площадь, которую занимает правильный шестиугольник, определяется следующим образом: S=(3*√(3)*R 2 )/2. Если радиус неизвестен, вместо него подставляем длину одной из сторон – как известно, она соответствует длине радиуса описанной окружности.

    Как из окружности сделать шестиугольник Как из окружности сделать шестиугольникКак из окружности сделать шестиугольник

    Как начертить ровный шестиугольник

    Как из окружности сделать шестиугольник

    • Инструкция
    • Инструкция
    • Инструкция
    • Инструкция
    • Инструкция
    • Инструкция

    Обычный шестиугольник, также называемый идеальным шестиугольником, имеет шесть равных сторон и шесть равных углов. Вы можете нарисовать шестиугольник при помощи рулетки и транспортира, грубый шестиугольник – при помощи круглого предмета и линейки или еще более грубый шестиугольник – при помощи только карандаша и немного интуиции. Если вы хотите знать, как нарисовать шестиугольник различными способами – просто читайте далее.

    Геометрические построения являются одной из главных частей обучения. Они формируют пространственное и логическое мышление, а также разрешают понять примитивные и натуральные геометрические обоснованности. Построения производятся на плоскости при помощи циркуля и линейки. Этими инструментами дозволено возвести крупное число геометрических фигур. При этом многие фигуры, кажущиеся довольно трудными, строятся с использованием простейших правил. Скажем, то, как возвести верный шестиугольник, дозволено описать каждого в нескольких словах.

    Вам понадобится

    • Циркуль, линейка, карандаш, лист бумаги.

    Инструкция

    1. Нарисуйте окружность. Установите некоторое расстояние между ножками циркуля. Это расстояние будет являться радиусом окружности. Выберите радиус таким образом, дабы вычерчивание окружности было довольно комфортным. Окружность должна всецело помещаться на листе бумаги. Слишком огромное либо слишком маленькое расстояние между ножками циркуля может привести к его изменению во время черчения. Оптимальным будет расстояние, при котором угол между ножками циркуля равен 15-30 градусов.

    2. Постройте точки вершин углов верного шестиугольника. Установите ножку циркуля, в которой закреплена игла, в всякую точку окружности. Игла должна проткнуть начерченную линию. Чем вернее будет установлен циркуль, тем вернее будет построение. Проведите дугу окружности так, дабы она пересекла начерченную ранее окружность.

    Переставьте иглу циркуля в точку пересечения только что начерченной дуги с окружностью. Начертите еще одну дугу, пересекающую окружность. Вновь переставьте иглу циркуля в точку пересечения дуги и окружности и вновь начертите дугу. Произведите данное действие еще три раза, перемещаясь в одном направлении по окружности.

    Каждого должно получиться шесть дуг и шесть точек пересечения.

    3. Постройте положительный шестиугольник. Ступенчато объедините все шесть точек пересечения дуг с изначально начерченной окружностью. Соединяйте точки прямыми, вычерчиваемыми при помощи линейки и карандаша. Позже произведенных действий будет получен верный шестиугольник, вписанный в окружность.

    Шестиугольником считается многоугольник, владеющий шестью углами и шестью сторонами. Многоугольники бывают как выпуклыми, так и вогнутыми. У выпуклого шестиугольника все внутренние углы тупые, у вогнутого один либо больше угол является острым. Шестиугольник довольно легко возвести. Это делается в пару шагов.

    Вам понадобится

    • Карандаш, лист бумаги, линейка

    Свойства простые и интересные

    Чтобы понять свойства правильного шестиугольника, его имеет смысл разбить на шесть треугольников:

    Это поможет в дальнейшем нагляднее отобразить его свойства, главные из которых:

    Описанная окружность и возможность построения

    Вокруг гексагона можно описать окружность, и притом только одну. Поскольку фигура эта правильная, то можно поступить довольно просто: от двух соседних углов провести внутрь биссектрисы. Они пересекутся в точке О, и образуют вместе со стороной между ними треугольник.
    Углы между стороной гексагона и биссектрисами будут по 60°, поэтому можно определенно сказать, что треугольник, к примеру, АОВ — равнобедренный. А поскольку третий угол тоже будет равен 60°, то он еще и равносторонний. Отсюда следует, что отрезки ОА и ОВ равны, значит, могут служить радиусом окружности.

    После этого можно перейти к следующей стороне, и из угла при точке С тоже вывести биссектрису. Получится очередной равносторонний треугольник, причем сторона АВ будет общей сразу для двух, а ОС — очередным радиусом, через который идет та же окружность. Всего таких треугольников получится шесть, и у них будет общая вершина в точке О. Получается, что описать окружность будет можно, и она всего одна, а ее радиус равен стороне гексагона:

    R=а.

    Именно поэтому и возможно построение этой фигуры с помощью циркуля и линейки.

    Зачем уметь строить эту геометрическую фигуру?

    Научиться изображать геометрические тела, в том числе и призмы, необходимо всем будущим художникам.

    С построения этих объектов начинается учебный процесс во всех заведениях. А уже после этого студенты постепенно переходят к изображению розеток, капителей, портрета и фигуры человека.

    Если вы освоите этот объект, то в дальнейшем вам будет проще изображать различные предметы, строящиеся на его основе. В частности, у вас не возникнет трудностей с различными коробками и упаковками, бытовой техникой, зданиями и так далее.

    Рисование геометрических тел также входит и в экзаменационную программу для поступления в художественный вуз. Однако с первого раза построить правильную фигуру с соблюдением пропорции и перспективы получается далеко не у каждого. Поэтому будет лучше, если в процессе подготовки к экзаменам вы потратите на изображение призмы достаточно времени, тогда на самом вступительном испытании будете чувствовать себя уверенно. С каждым разом изображение призмы будет даваться все легче.

    В школе-студии К.Э. Арутюновой «Мастер рисунка» учат работать с геометрическими телами. К каждому ученику применяется индивидуальный подход с учетом его уровня и времени до сдачи вступительного экзамена. Преподаватель подробно разбирает со студентами все работы, обращает внимание на ошибки и помогает их исправить.

    Готовитесь ли вы к поступлению в художественный вуз или просто хотите научиться для себя, без основ вам не обойтись. Независимо от того, в каком стиле вы собираетесь работать позднее, начать изучение все равно необходимо с базовых знаний. Запишитесь на занятия по телефону в Москве или через специальную форму на сайте.

    Определение и построение

    Правильным шестиугольником называется плоскостная фигура, имеющая шесть равных по длине сторон и столько же равных углов.
    Если вспомнить формулу суммы углов многоугольника

    то получается, что в этой фигуре она равна 720°. Ну а поскольку все углы фигуры равны, нетрудно посчитать, что каждый из них равен 120°.

    Начертить шестиугольник очень просто, для этого достаточно циркуля и линейки.

    Пошаговая инструкция будет выглядеть так:

    При желании можно обойтись и без линии, начертив пять равных по радиусу окружностей.

    Полученная таким образом фигура будет правильным шестиугольником, и это можно доказать ниже.

    Видео:Построение пятиугольника циркулемСкачать

    Построение пятиугольника циркулем

    Построение правильного шестиугольника и его свойства: углы, площадь и радиусы окружностей; интересные факты

    Как из окружности сделать шестиугольник

    Видео:Как начертить три линии под 120 градусов и шестиугольникСкачать

    Как начертить три линии под 120 градусов и шестиугольник

    Определение и построение

    Правильным шестиугольником называется плоскостная фигура, имеющая шесть равных по длине сторон и столько же равных углов.

    Если вспомнить формулу суммы углов многоугольника

    то получается, что в этой фигуре она равна 720°. Ну а поскольку все углы фигуры равны, нетрудно посчитать, что каждый из них равен 120°.

    • Начертить шестиугольник очень просто, для этого достаточно циркуля и линейки.
    • Пошаговая инструкция будет выглядеть так:
    1. Как из окружности сделать шестиугольникчертится прямая линия и на ней ставится точка;
    2. из этой точки строится окружность (она является ее центром);
    3. из мест пересечения окружности с линией строятся еще две таких же, они должны сойтись в центре.
    4. после этого отрезками последовательно соединяются все точки на первой окружности.
    1. При желании можно обойтись и без линии, начертив пять равных по радиусу окружностей.
    2. Полученная таким образом фигура будет правильным шестиугольником, и это можно доказать ниже.

    Свойства простые и интересные

    Чтобы понять свойства правильного шестиугольника, его имеет смысл разбить на шесть треугольников:

    Это поможет в дальнейшем нагляднее отобразить его свойства, главные из которых:

    1. диаметр описанной окружности;
    2. диаметр вписанной окружности;
    3. площадь;
    4. периметр.

    Описанная окружность и возможность построения

    Как из окружности сделать шестиугольник

    Углы между стороной гексагона и биссектрисами будут по 60°, поэтому можно определенно сказать, что треугольник, к примеру, АОВ — равнобедренный. А поскольку третий угол тоже будет равен 60°, то он еще и равносторонний. Отсюда следует, что отрезки ОА и ОВ равны, значит, могут служить радиусом окружности.

    После этого можно перейти к следующей стороне, и из угла при точке С тоже вывести биссектрису.

    Получится очередной равносторонний треугольник, причем сторона АВ будет общей сразу для двух, а ОС — очередным радиусом, через который идет та же окружность.

    Всего таких треугольников получится шесть, и у них будет общая вершина в точке О. Получается, что описать окружность будет можно, и она всего одна, а ее радиус равен стороне гексагона:

    Газовый баллон для компрессора

    • R=а.
    • Именно поэтому и возможно построение этой фигуры с помощью циркуля и линейки.
    • Ну а площадь этой окружности будет стандартная:
    • S=πR²

    Вписанная окружность

    Как из окружности сделать шестиугольник

    1. Высота равностороннего треугольника вычисляется просто:
    2. h²=а²-(а/2)²= а²3/4, h=а(√3)/2
    3. А поскольку R=a и r=h, то получается, что
    4. r=R(√3)/2.
    5. Таким образом, вписанная окружность проходит через центры сторон правильного шестиугольника.
    6. Ее площадь будет составлять:
    7. S=3πa²/4,
    8. то есть три четверти от описанной.

    Периметр и площадь

    С периметром все ясно, это сумма длин сторон:

    P=6а, или P=6R

    А вот площадь будет равна сумме всех шести треугольников, на которые можно разбить гексагон. Поскольку площадь треугольника вычисляется как половина произведения основания на высоту, то:

    • S=6(а/2)(а(√3)/2)= 6а²(√3)/4=3а²(√3)/2 или
    • S=3R²(√3)/2
    • Желающим вычислять эту площадь через радиус вписанной окружности можно сделать и так:

    Занимательные построения

    В гексагон можно вписать треугольник, стороны которого будут соединять вершины через одну:

    Всего их получится два, и их наложение друг на друга даст звезду Давида. Каждый из этих треугольников — равносторонний. В этом нетрудно убедиться. Если посмотреть на сторону АС, то она принадлежит сразу двум треугольникам — ВАС и АЕС. Если в первом из них АВ=ВС, а угол между ними 120°, то каждый из оставшихся будет 30°. Отсюда можно сделать закономерные выводы:

    1. Высота АВС из вершины В будет равна половине стороны шестиугольника, поскольку sin30°=1/2. Желающим убедиться в этом можно посоветовать пересчитать по теореме Пифагора, она здесь подходит как нельзя лучше.
    2. Сторона АС будет равна двум радиусам вписанной окружности, что опять-таки вычисляется по той же теореме. То есть АС=2(a(√3)/2)=а(√3).
    3. Треугольники АВС, СДЕ и АЕF равны по двум сторонам и углу между ними, и отсюда вытекает равенство сторон АС, СЕ и ЕА.

    Как прозвонить диод мультиметром на плате

    1. Пересекаясь друг с другом, треугольники образуют новый гексагон, и он тоже правильный. Доказывается это просто:
    1. Как из окружности сделать шестиугольникУгол АВF равен углу ВАС. Таким образом, получившийся треугольник с основанием АВ и безымянной вершиной напротив него — равнобедренный.
    2. Все такие же треугольники, основанием которых служит сторона гексагона, равны по стороне и прилегающей к ней углам.
    3. Треугольники при вершинах гексагона являются равносторонними и равными, что вытекает из предыдущего пункта.
    4. Углы новообразованного шестиугольника равняются 360-120-60-60=120°.
    • Таким образом, фигура отвечает признакам правильного шестиугольника — у нее шесть равных сторон и углов. Из равенства треугольников при вершинах легко вывести длину стороны нового гексагона:
    • d=а(√3)/3

    Она же будет радиусом описанной вокруг него окружности. Радиус вписанной будет вдвое меньше стороны большого шестиугольника, что было доказано при рассмотрении треугольника АВС. Его высота составляет как раз половину стороны, следовательно, вторая половина — это радиус вписанной в маленький гексагон окружности:

    r₂=а/2

    Площадь нового шестиугольника можно посчитать так:

    Получается, что площадь гексагона внутри звезды Давида в три раза меньше, чем у большого, в который вписана звезда.

    От теории к практике

    Как из окружности сделать шестиугольник

    Нашла свое применение и гексагональная плитка. Она распространена куда меньше четырехугольной, но класть ее удобнее: в одной точке смыкаются три плитки, а не четыре. Композиции могут получаться очень интересные:

    Выпускается и бетонная плитка для мощения.

    Распространенность гексагона в природе объясняется просто. Таким образом, проще всего плотно уместить круги и шары на плоскости, если у них одинаковый диаметр. Из-за этого у пчелиных сот такая форма.

    На данной странице калькулятор поможет рассчитать площадь правильного шестиугольника онлайн. Для расчета задайте длину стороны или радиус окружности.

    Шестиугольник — многоугольник у которого все стороны равны, а все внутренние углы равны 120°.

    Через сторону

    Как из окружности сделать шестиугольник

    Формула для нахождения площади правильного шестиугольника через сторону:

    Через радиус описанной окружности

    Как из окружности сделать шестиугольник

    Формула для нахождения площади правильного шестиугольника через радиус описанной окружности:

    Правильный шестиугольник (гексагон) — многоугольник с шестью равными сторонами.

    Станок для заточки фуганочных ножей

    Гексагон — правильный выпуклый многоугольник с шестью сторонами или шестиугольник.

    Шестиугольник — это многоугольник, имеющий шесть сторон и шесть углов. В правильном шестиугольнике все стороны равны, а углы образуют шесть равносторонних треугольников.

    Как из окружности сделать шестиугольник

    1. Выпуклый шестиугольник — это многоугольник, с общим количеством вершин, равным шести, при этом все точки такого шестиугольника лежат по одну сторону от прямой, которая проведена между двумя любыми соседними его вершинами.
    2. Правильный шестиугольник — это шестиугольник, все стороны которого равны между собой.
    3. Сумма углов выпуклого шестиугольника определяется по общей формуле 180°(n-2) и равна 180 ( 6 — 2 ) = 720 градусов.
    4. При решении задач для нахождения площади произвольного (неправильного) шестиугольника используют метод трапеций, который заключается в разбиении фигуры на отдельные трапеции, площадь каждой из которых можно найти по известным всем формулам.

    Свойства правильного шестиугольника

    • все внутренние углы равны между собой
    • каждый внутренний угол правильного шестиугольника равен 120 градусам
    • все стороны равны между собой
    • сторона правильного шестиугольника равна радиусу описанной окружности
    • большая диагональ правильного шестиугольника является диаметром описанной вокруг него окружности и равна двум его сторонам
    • меньшая диагональ правильного шестиугольника в ( sqrt ) раз больше его стороны.
    • vеньшая диагональ правильного шестиугольника перпендикулярна его стороне
    • правильный шестиугольник заполняет плоскость без пробелов и наложений
    • диагонали пересекаются в одной точке и делят его на 6 равносторонних треугольников, у которых высота равна радиусу вписанной в правильный шестиугольник окружности. 6.
    • инвариантен относительно поворота плоскости на угол, кратный относительно центра описанной окружности (слово “инвариантный” означает, что при таких поворотах правильный шестиугольник перейдёт в себя, то есть такие повороты являются его симметриями)
    • nреугольник, образованный стороной шестиугольника, его большей и меньшей диагоналями, прямоугольный, а его острые углы равны 30° и 60° .
    • Внутренние углы Внутренние углы в правильном шестиугольнике равны (120^circ) :
    • Апофема Апофема правильного шестиугольника (перпендикуляр, проведенный из центра к любой стороне)
    • Апофема Апофема правильного шестиугольника (перпендикуляр, проведенный из центра к любой стороне)
    • Радиус вписанной окружности правильного шестиугольника равен апофеме:
    • (r = m = alargefrac
      ormalsize)
    • Радиус описанной окружности равен стороне правильного шестиугольника:
    • Периметр правильного шестиугольника
    • Площадь правильного шестиугольника Формула площади правильного шестиугольника через длину стороны
    • (S = pr = largefrac
      ormalsize),
    • где (p) − полупериметр шестиугольника.

    Видео:Свойства правильного шестиугольникаСкачать

    Свойства правильного шестиугольника

    Деление окружности на шесть равных частей и построение правильного вписанного шестиугольника

    Деление окружности на шесть равных частей и построение пра­вильного вписанного шестиугольника выполняют с помощью угольника с углами 30, 60 и 90º и/или циркуля.

    При делении окружности на шесть равных частей циркулем из двух концов одного диаметра радиусом, равным радиусу данной окружности, проводят дуги до пересечения с окружностью в точках 2, 6 и 3, 5 (рис. 2.24).

    Последовательно соединив полученные точки, получают правильный вписанный шестиугольник.

    Как из окружности сделать шестиугольник

    При делении окружности циркулем из четырех концов двух взаимно перпендикулярных диаметров окружности проводят радиусом, равным радиусу данной окружности, дуги до пересечения с окружностью (рис. 2.25). Соединив полученные точки, получают двенадцатиугольник.

    Как из окружности сделать шестиугольник

    2.2.5 Деление окружности на пять и десять равных частей и построение правильного вписанного пятиугольника и десятиугольника

    Деление окружности на пять и десять равных частей и построение правильного вписанного пятиугольника и десятиугольника показано на рис. 2.26.

    Как из окружности сделать шестиугольник

    Половину любого диаметра (радиус) делят пополам (рис. 2.26 а), получают точку А.Из точки А,как из центра, проводят дугу радиусом, равным расстоянию от точки Адо точки 1 до пересечения со второй половиной этого диаметра, в точке В(рис. 2.26 б). Отрезок 1Вравен хорде, стягивающей дугу, длина которой равна 1/5 длины окружности.

    Делая засечки на окружности (рис. 2.26, в) радиусом К,равным отрезку 1В,делят окруж­ность на пять равных частей. Начальную точку 1 выбирают в зависимости от расположения пятиугольника. Из точки 1 строят точки 2 и 5 (рис. 2.26, в), затем из точки 2 строят точку 3, а из точки 5 строят точку 4.

    Расстояние от точки 3 до точки 4 проверяют циркулем. Если расстояние между точками 3 и 4 равно отрезку 1В, то построения были выполнены точно. Нельзя выполнять засечки последовательно, в одну сторону, так как происходит набегание ошибок и последняя сторона пятиугольника получается перекошенной.

    Последовательно соединив найденные точки, получают пятиугольник (рис. 2.26, г).

    Деление окружности на десять равных частей выполняют аналогично делению окружности на пять равных частей (рис. 2.26), но сначала делят окружность на пять частей, начиная построение из точки 1, а затем из точки 6, находящейся на противоположном конце диаметра (рис. 2.27, а). Соединив последовательно все точки, получают правильный вписанный десятиугольник(рис. 2.27, б).

    Как из окружности сделать шестиугольник

    2.2.6 Деление окружности на семь и четырнадцать равных частей и построение правильного вписанного семиугольника и

    четырнадцатиугольника

    Деление окружности на семь и четырнадцать равных частей и по­строение правильного вписанного семиугольника и четырнадцатиугольника показано на рис. 2.28 и 2.29.

    Из любой точки окружности, например точки А, радиусом заданной окружности проводят дугу (рис. 2.28, а) до пересечения с окружностью в точках В и D. Соединим точки Ви Dпрямой.

    Половина полученного отрезка (в данном случае отрезок ВС) будет равна хорде, которая стягивает дугу, составляющую 1/7 длины окружности. Радиусом, равным отрезку ВС,делают засечки на окружности в последовательности, показанной на рис. 2.28, б.

    Соединив последовательно все точки, получают правильный вписанный семиугольник (рис. 2.28, в).

    Деление окружности на четырнадцать равных частей выполняется делением окружности на семь равных частей два раза от двух точек (рис. 2.29, а).

    Как из окружности сделать шестиугольник

    Сначала окружность делится на семь равных частей от точки 1, затем то же построение выполняется от точки 8. Построенные точки соединяют последовательно прямыми линиями и получают правильный вписанный четырнадцатиугольник (рис. 2.29, б).

    Как из окружности сделать шестиугольник

    • а) б)
    • Рисунок 2.29
    • Построение эллипса
    • Изображение окружности в прямоугольной изометрической проекции во всех трех плоскостях проекций представляет собой одинаковые по форме эллипсы.
    • Направление малой оси эллипса совпадает с направлением аксонометрической оси, перпендикулярной той плоскости проекций, в которой лежит изображаемая окружность.

    При построении эллипса, изображающего окружность небольшого диаметра, достаточно построить восемь точек, принадлежащих эллипсу (рис. 2.30). Четыре из них являются концами осей эллипса (A, B, С, D),а четыре других (N1, N2, N3, N4) расположены на прямых, параллельных аксонометрическим осям, на расстоянии, равном радиусу изображаемой окружности от центра эллипса.

    Как из окружности сделать шестиугольник Как из окружности сделать шестиугольник
    аб

    Видео:Деление окружности на 3, 4, 5, 6 и 7 равных частейСкачать

    Деление окружности на 3, 4, 5, 6 и 7 равных частей

    Урок по геометрии «Построение правильных многоугольников» 9 класс

    • Тема: Построение правильных многоугольников.
    • Этап ориентации.
    • Оборудование: раздаточный тестовый материал, мультимедийный экран, компьютер, карточки с заданиями.
    • Урок с использованием метода проектов, интерактивных технологий (работа в группах) предполагает класс разбить на 3 группы по интересам.
    • Этап постановки цели урока.
    1. Научить учеников строить правильные треугольники, четырёхугольники и шестиугольники;

      Найти способ построения правильных 2n угольников;

      Показать практическое применение данных построений в архитектуре и в быту;

      Прививать каждому ученику вкус к самостоятельной, активной и творческой деятельности;

      Развивать познавательный интерес к предмету.

      Актуализация опорных знаний (2 вида тестов).

      Мотивация учебной деятельности (презентации).

      Изложение нового материала (использование программы «Живая геометрия»).

      Итог урока. Заключительная презентация.

      Этап организации выполнения плана действий.

      Здравствуйте, сегодня у нас открытие банка «Созвездие». Наши гости выступают в роли акционеров банка «Созвездие». Я, как управляющая банком, собрала вас, акционеров, с целью донесения до вас новой информации и принятия решения.

      Сегодня в наш банк «Созвездие» обратились первые представители трёх организаций (пчеловодов, архитекторов, дизайнеров интерьера), с целью оформить кредит в нашем банке.

      И мы должны с вами принять решение о выдаче кредита (либо отказе) и о его сумме.

      На повестке собрания —

      1. Представители организаций должны убедить нас в необходимости и перспективности своих планов;

      2. Информировать нас о своих финансовых возможностях.

      3. А мы должны вынести решение о возможности (невозможности) кредитования.

      Все финансовые операции будут производить бухгалтеры нашего банка и результаты заносить в векселя.

      1 – Организация пчеловодов (разводят пчел). Кредит нужен для приобретения пасеки.

      Как из окружности сделать шестиугольник

      2 – Архитекторы (создают проекты зданий). Оформляют кредит для приобретения лицензионных программ с использованием трехмерного пространства.

      3 – Дизайнеры интерьеров (создают эскизы паркета). Кредит – для поездки в Швейцарию. Цель поездки — обмен опытом.

      2. Актуализация опорных знаний.

      Необходимое условие кредитования — это заполнение анкетных данных всеми представителями организаций. На столах у вас лежат анкеты на синих и красных листах. Вы выбираете анкеты согласно своим возможностям.

      1. Решение тестовых заданий по уровням сложности:
      2. Фамилия_________________ Имя___________________
      3. Максимальное количество — 4 балл (4000 грн.)

      1. Какая из ломанных является многоугольником?

      Как из окружности сделать шестиугольник

      2.Какой многоугольник выпуклый?

      Как из окружности сделать шестиугольник

      3. Многоугольник является правильным, если все его ….

      1) углы равны; 2) углы и стороны равны; 3) стороны равны.

      4. Соедините стрелочками соответствующие ячейки согласно формулам.

      • Радиус окружности, описанной около правильного треугольника
      • a
      • ____
      • 2
      • Радиус окружности, вписанной в правильный четырёхугольник
      • a
      • Радиус окружности, описанной около правильного шестиугольника
      • a
      • ____
      • 3
      • Фамилия_________________ Имя___________________
      • Максимальное количество — 8 баллов (8000 грн.)

      1.Соедините стрелочками соответствующие ячейки согласно формулам.

      1. Радиус окружности, описанной около правильного треугольника
      2. a
      3. ____
      4. 2
      5. Радиус окружности, вписанной в правильный четырёхугольник
      6. a
      7. Радиус окружности, описанной около правильного шестиугольника
      8. a
      9. ____
      10. 3
      11. Радиус окружности, вписанной в правильный треугольник
      12. а
      13. ____
      14. 2√3
      15. Радиус окружности, вписанной в правильный шестиугольник
      16. a√3
      17. ____
      18. 2
      19. Радиус окружности, описанной около правильного четырёхугольника
      20. a
      21. ____
      22. 2sin 180
      23. n
      24. Радиус окружности, вписанной в правильный многоугольник
      25. а
      26. ____
      27. 2
      28. Радиус окружности, описанной около правильного многоугольника
      29. a
      30. ____
      31. 2tg 180
      32. n

      2. Может ли пятиугольник иметь стороны длиной 3 см, 4 см, 8 см, 6см, 25 см?

      3. В правильном n-угольнике сумма внутренних углов равна 3600. Сколько сторон у этого многоугольника?

      • 1) 4; 2) 3; 3) 5.
      • 4. У правильного пятиугольника внешний угол равен:
      • 1) 360; 2) 45 0; 3) 72 0.

      Как из окружности сделать шестиугольник

      Тесты проверяют бухгалтеры и ответы помещают в векселя.

      (Федоренко Б., Верескун Е., Фещенко Е.)

      3. Мотивация учебной деятельности.

      1. Учитель.
      2. А теперь мы дадим возможность каждой из организаций презентовать свои проекты:
      3. Презентации 3х групп: (выступление авторов)

        Пчеловоды; («Геометрия пчелиных сот») Полященко Вика

        Архитекторы; (пентагон. ) Парубаева Вика

        Дизайнеры интерьера (эскизы паркета) Полященко Влада.

      • После презентаций делаем вывод:
      • Что все организации столкнулись с необходимостью построения правильных многоугольников.
      • Объявление практической темы собрания:
      • Построение правильных многоугольников
      • с помощью линейки и циркуля.
      • Представители, какой организации могут дать нам историческую справку о создателе метода построения правильных многоугольников?

      4.Исторический доклад — Брусниченко АКак из окружности сделать шестиугольник.

      Первокурсник Геттингенского университета Карл Гаусс (1777–1855) решил задачу, перед которой математическая наука пасовала более 2 с лишним тысяч лет.

      Еще древние греки нашли способы построения с помощью только циркуля и линейки правильных многоугольников с числом сторон 3, 4, 5, 15, а также с числом сторон, большим в 2 раза. Однако в отношении прочих правильных многоугольников царила полная неизвестность.

      И вот будущий «король математиков» Гаусс догадался, как построить правильный 17-угольник. Это открытие стало поворотным пунктом в его жизни: ранее колебавшийся между филологией и математикой, теперь он твердо решил посвятить себя последней.

      Это событие Гаусс посчитал столь значительным, что отметил его в «Дневнике» (запись от 30 марта 1796) и завещал высечь правильный 17-угольник на своём надгробии (воля Гаусса была исполнена).

      5. Изложение нового материала.

      1. А теперь мы хотим выслушать ваше решение данной проблемы – «построение правильного многоугольника».
      2. Для построения правильных многоугольников будем использовать связь с окружностью.
      3. 1 группа – строит правильный шестиугольник (Кузьмина Е.)
      4. 3 группа — строит правильный треугольник; (Христолюбов А. )
      5. 2 группа — строит правильный пятиугольник; (Дударева Я.);
      6. Все участники чертят чертежи по очереди у себя в тетрадях по заранее готовым окружностям.

      А наш банк предлагает вам альтернативное решение данной проблемы — с помощью программы «Живая геометрия» — платно!.

      Четырёхугольник (восьмиугольник) – Набоков Д. на компьютере с помощью программы «Живая геометрия»

      Вопрос ко всем присутствующим:

      В чём преимущества построения правильных многоугольников с помощью программы «Живая геометрия»? И готовы ли вы будете её у нас приобрести?

      После выполнения построения участники делают вывод, как построить правильный 2n-угольник, используя правильный n-угольник.

      Банк даёт вам возможность увеличить сумму кредита – выполнение заданий самостоятельной работы (чем больше выполненных заданий, тем больше сумма кредита) (на разноцветных листах А4):

      Задания для самостоятельной работы:

      Чертежи выполняют на заранее приготовленных карточках:

      Средний уровень – построить правильный восьмиугольник

      Как из окружности сделать шестиугольник

      Высокий уровень — построить правильный шестнадцатиугольник.

      Как из окружности сделать шестиугольник

      Достаточный уровень — построить правильный двенадцаугольник

      Как из окружности сделать шестиугольник

      Проверяют бухгалтеры и заносят баллы в векселя.

      А теперь, пока бухгалтеры выполняют подсчёты, мы все вместе посмотрим презентацию «Правильные 4,5,6,7,8,9 – угольники в быту, технике, архитектуре, природе». В ходе просмотра данной презентации, мы, возможно, увидели потенциальных клиентов нашего банка.

      Подводим итоги нашего собрания:

      Видео:Деление окружности на пять равных частей. Урок 7. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать

      Деление окружности на пять равных частей. Урок 7. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)

      Построение правильных многоугольников

      • Построить правильный шестиугольник, сторона которого равна данному отрезку.
      • Дано: отрезок DC.
      • Построить: правильный шестиугольник, сторона которого равна DC.
      • Решение:

      Для решения задачи воспользуемся тем, что сторона шестиугольника равна радиусу описанной около него окружности, т.е. (смотри формулу для вычисления стороны правильного многоугольника), где — радиус окружности описанной около правильного многоугольника. Нам нужно построить правильный шестиугольник со стороной DC, поэтому с помощью циркуля измеряем отрезок DC и строим окружность радиуса DC, и отмечаем на ней произвольную точку А1, центр окружности обозначаем буквой О.

      Затем не меняя раствора циркуля, построим на этой окружности точки А2, А3, А4, А5, А6, так, чтобы выполнялись равенства

      А1А2 = А2А3 = А3А4 = А4А5 = А5А6 = DC (т.е.

      сначала строим окружность радиуса DC с центром в точке А1 (всю окружность строить необязательно, смотри выделенное красным), данная окружность пересечет окружность с центром О в точке А2, далее аналогично строим окружность радиуса DC с центром в точке А2, она пересечет окружность с центром О в точке А3 и т.д.).

      Как из окружности сделать шестиугольник

      Теперь соединяя последовательно построенные точки отрезками, получим искомый правильный шестиугольник А1А2А3А4А5А6.

      Как из окружности сделать шестиугольник

      Задача 2

      Дан правильный -угольник. Построить правильный 2-угольник.

      Дано: правильный -угольник А1А2А3…Аn.

      1. Построить: правильный 2-угольник.
      2. Решение:
      3. Пусть, например, нам дан шестиугольник А1А2А3А4А5А6, значит, построить нужно двенадцатиугольник.

      Сначала опишем около данного шестиугольника А1А2А3А4А5А6 окружность. Для этого построим биссектрисы углов А1 и А2.

      Чтобы построить биссектрису угла А1, строим окружность произвольного радиуса с центром в точке А1 (полностью окружность строить необязательно, смотри выделенное красным цветом), данная окружность пересечет стороны А1А2 и А1А6 угла А1 в точках Е и К. Затем строим две окружности с центрами в точках Е и К радиуса ЕК (полностью окружности строить необязательно, смотри выделенное синим и зеленым цветом), данные окружности пересекутся в точке Р. Далее проводим луч А1Р, который и будет биссектрисой угла А1.

      • Аналогично строим биссектрису угла А2.
      • Точку пересечения биссектрис углов А1 и А2 обозначаем буквой О и строим окружность радиуса ОА1 с центром О (окружность описанная около А1А2А3А4А5А6).

      Далее нужно каждую из дуг А1А2, А2А3, А3А4, А4А5, А5А6, А6А1разделитьпополам. Чтобы разделить дугу А1А2 пополам, построим серединный перпендикуляр к отрезку А1А2.

      Для этого строим две окружности с центрами в точках А1 и А2 радиуса А1А2 (полностью окружность строить необязательно, смотри выделенное красным цветом). Данные окружности пересекутся в двух точках, одну обозначим буквой М, а другая совпадет с точкой О, т.к.

      у шестиугольника сторона равна радиусу (с другими многоугольниками совпадения с точкой О не будет) . Затем проводим прямую МО, данная прямая пересечет дугу А1А2 в точке В1, которая и разделит дугу А1А2 пополам.

      Далее точку В1 соединяем с концами А1 и А2 дуги А1А2.

      Аналогично находим точки В2, В3. Точки В4, В5, В6 в данном случае строить необязательно, они получаются автоматически при построении точек В1, В2, В3, т.к. шестиугольник симметричная фигура.

      1. Получили двенадцатиугольник А1В1А2В2А3В3А4В4А5В5А6В6 (смотри выделенное красным).
      2. Мы выполняли построения на примере правильного шестиугольника, если мы имеем произвольный правильный -угольник, то все построения выполняются аналогично.

      Применяя указанный способ, можно с помощью циркуля и линейки построить целый ряд правильных многоугольников, если построен один из них. Например, построив правильный треугольник и пользуясь результатом задачи 2, можно построить правильный шестиугольник, затем правильный двенадцатиугольник и вообще 2k-угольник, где — любое целое число, больше двух.

      Замечание

      Не все правильные многоугольники можно построить с помощью циркуля и линейки. Доказано, например, что правильный семиугольник не может быть построен при помощи циркуля и линейки.

      Видео:Как построить шестиугольник без циркуляСкачать

      Как построить шестиугольник без циркуля

      Правильный шестиугольник ≪ Scisne?

      Правильный шестиугольник (гексагон) — это правильный многоугольник с шестью сторонами.

      Правильный шестиугольник

      Особенность правильного шестиугольника — равенство его стороны и радиуса описанной окружности , поскольку

      Все углы равны 120°. Радиус вписанной окружности равен:

      Периметр правильного шестиугольника равен: Площадь правильного шестиугольника рассчитывается по формулам: ,

      Шестиугольники замощают плоскость, то есть могут заполнять плоскость без пробелов и наложений, образуя так называемый паркет.

      Шестиугольный паркет (шестиугольный паркетаж) — замощение плоскости равными правильными шестиугольниками, расположенными сторона к стороне.

      Как из окружности сделать шестиугольникШахматная раскраска шестиугольного паркета

      Шестиугольный паркет является двойственным треугольному паркету: если соединить центры смежных шестиугольников, то проведённые отрезки дадут треугольный паркетаж. Символ Шлефли шестиугольного паркета — , что означает, что в каждой вершине паркета сходятся три шестиугольника.

      Шестиугольный паркет является наиболее плотной упаковкой кругов на плоскости.

      В двумерном евклидовом пространстве наилучшим заполнением является размещение центров кругов в вершинах паркета, образованного правильными шестиугольниками, в котором каждый круг окружен шестью другими. Плотность данной упаковки равна . В 1940 году было доказано, что данная упаковка является самой плотной.

      Наиболее плотная упаковка кругов на плоскости

      Правильный шестиугольник со стороной является универсальной покрышкой, то есть всякое множество диаметра можно покрыть правильным шестиугольником со стороной (лемма Пала). Правильный шестиугольник можно построить с помощью циркуля и линейки. Ниже приведён метод построения, предложенный Евклидом в «Началах», книга IV, теорема 15.

      Построение правильного шестиугольника с помощью циркуля и линейки

      Правильный шестиугольник в природе, технике и культуре

      Пчелиные соты показывают разбиение плоскости на правильные шестиугольники. Шестиугольная форма больше остальных позволяет сэкономить на стенках, то есть на соты с такими ячейками уйдёт меньше воска.

      Пчелиные соты

      Некоторые сложные кристаллы и молекулы, например графит, имеют гексагональную кристаллическую решётку.

      Кристаллическая решетка графита

      Снежинки образуется, когда микроскопические капли воды в облаках притягиваются к пылевым частицам и замерзают. Появляющиеся при этом кристаллы льда, не превышающие поначалу 0,1 мм в диаметре, падают вниз и растут в результате конденсации на них влаги из воздуха. При этом образуются шестиконечные кристаллические формы. Из-за структуры молекул воды между лучами кристалла возможны углы лишь в 60° и 120°. Основной кристалл воды имеет в плоскости форму правильного шестиугольника. На вершинах такого шестиугольника затем осаждаются новые кристаллы, на них — новые, и так получаются разнообразные формы звёздочек-снежинок.

      Снежинки

      Гигантский гексагон — атмосферное явление на Сатурне.

      Гигантский гексагон — устойчивое атмосферное образование на северном полюсе Сатурна, открытое аппаратом Вояджер-1 и наблюдаемое снова в 2006 году аппаратом Кассини-Гюйгенс.

      Учёные из Оксфордского университета смогли в лабораторных условиях смоделировать возникновение подобного гексагона. Чтобы выяснить, как возникает такое образование, исследователи поставили на вертящийся стол 30-литровый баллон с водой. Она моделировала атмосферу Сатурна и её обычное вращение. Внутри учёные поместили маленькие кольца, вращающиеся быстрее ёмкости. Это генерировало миниатюрные вихри и струи, которые экспериментаторы визуализировали при помощи зелёной краски. Чем быстрее вращалось кольцо, тем больше становились вихри, заставляя близлежащий поток отклоняться от круговой формы. Таким образом авторам опыта удалось получить различные фигуры — овалы, треугольники, квадраты и, конечно, искомый шестиугольник.

      Вращение гексагона на северном полюсе Сатурна

      Дорога гигантов — памятник природы из примерно 40 000 соединённых между собой базальтовых (реже андезитовых) колонн, образовавшихся в результате древнего извержения вулкана. Расположен на северо-востоке Северной Ирландии в 3 км к северу от города Бушмилса. Верхушки колонн образуют подобие трамплина, который начинается у подножья скалы и исчезает под поверхностью моря. Большинство колонн шестиугольные, хотя у некоторых четыре, пять, семь и восемь углов. Самая высокая колонна высотой около 12 м. Около 50-60 миллионов лет назад, во время палеогенового периода, месторасположение Антрим подвергалось интенсивной вулканической активности, когда расплавленный базальт проникал через отложения, формируя обширные лавовые плато. По мере быстрого охлаждения происходило сокращение объёма вещества (подобное наблюдается при высыхании грязи). Горизонтальное сжатие приводило к характерной структуре шестигранных столбов.

      Дорога гигантов

      Игровое поле зачастую составляют шестиугольники. Замощение плоскости правильными шестиугольниками является основой для гекса, гексагональных шахмат и других игр на клетчатом поле, полигексов, вариантов модели «Жизнь» и других двумерных клеточных автоматов, кольцевых флексагонов и т.п.

      Гексагональные шахматы Глинского. Начальное положение фигур.

      Сечение гайки имеет вид правильного шестиугольника.

      Гайки

      Звезда Давида (гексаграмма) — шестиконечная звезда, образованная двумя правильными треугольниками, символ иудаизма.

      Звезда Давида
      • Пчелиные соты становятся шестиугольными без помощи пчёл Регулярный ячеистый рисунок можно сделать, если ячейки будут треугольными, квадратными или шестиугольными. Шестиугольная форма больше остальных позволяет сэкономить на стенках, то есть на соты с такими ячейками уйдёт меньше воска. Впервые такую «экономность» пчёл заметили в IV веке н. э., и тогда же было высказано предположение, что пчёлы при постройке сотов «руководствуются математическим планом». Однако, полагают исследователи из Кардиффского университета, инженерная слава пчёл сильно преувеличена: правильная геометрическая форма шестигранных ячеек сотов возникает из-за, действующих на них физических сил, а насекомые тут лишь помощники.
      • Почему стекло прозрачное?
      • По своей структуре простейшие биосистемы и углеводородные кристаллы необыкновенно похожи. Если такой минерал дополнить компонентами белка, то мы получим реальный протоорганизм. Именно так видит начало начал кристаллизационная концепция происхождения жизни.
      • Споры о структуре воды вот уже не одно десятилетие волнуют как научную общественность, так и людей, с наукой не связанных. Этот интерес не случаен: структуре воды порой приписывают целебные свойства, причём многие уверены, что этой структурой можно управлять каким-то физическим методом либо просто силой духа. А каково мнение учёных, которые не одно десятилетие занимаются изучением тайн воды в жидком и твёрдом состоянии?
      • Используя опыт других исследователей и результаты собственных экспериментальных и клиническо-экспериментальных исследований, автор в пределах своих возможностей указывает на лечебные свойства пчелиного меда и на методы его применения в медицине. Желая придать этому труду более законченный вид, и чтобы читатель получил более целостное представление о хозяйственном и медицинском значении пчел, в книге кратко будут рассмотрены и другие продукты пчеловодства, неразрывно связанные с жизнью пчел, а именно: пчелиный яд, пчелиное маточное молочко, цветочная пыльца, воск и прополис, а также и отношение науки к этим продуктам.
      • Каустики на плоскости и в пространстве Каустики — это вездесущие оптические поверхности и кривые, возникающие при отражении и преломлении света. Каустики можно описать как линии или поверхности, вдоль которых концентрируются световые лучи.
      • Они повсюду: в каждом электроприборе, начиная с телевизора и заканчивая старыми тамагочами. Мы не знаем о них практически ничего, ведь воспринимаем их как данность. Но без них мир бы полностью изменился. Полупроводники. О том, что это такое и как они работают.
      • Полет шмеля оказался устойчив к турбулентности Международный коллектив ученых выяснил, насколько легко приходится шмелям летать в сильно ветреную погоду. Оказалось, что даже в условиях значительной турбулентности особый механизм создания подъемной силы позволяет насекомым оставаться на лету с минимальными дополнительными затратами энергии.
      • Испанские ученые открыли механизм, который может приводить к спонтанному образованию кристаллов карбонатов и силикатов очень сложной и необычной формы. Эти кристаллические новообразования напоминают биоморфы — неорганические структуры, полученные при участии живых организмов. А механизм, приводящий к такой мимикрии, на удивление прост — это всего лишь самопроизвольные колебания pH раствора карбонатов и силикатов на границе формирующегося твердого кристалла и жидкой среды.
      • Ледяные узоры высокого давления

      Видео:Как из квадратного листа бумаги сделать правильный шестиугольник?Скачать

      Как из квадратного листа бумаги сделать правильный шестиугольник?

      Шестиугольник и его свойства

      Развернуть структуру обучения

      Свернуть структуру обучения

      Шестиугольник — это многоугольник, общее количество углов (вершин) которого равно шести.

      Выпуклый шестиугольник — это многоугольник, с общим количеством вершин, равным шести, при этом все точки такого шестиугольника лежат по одну сторону от прямой, которая проведена между двумя любыми соседними его вершинами.

      Чему равна сумма углов выпуклого шестиугольника? Сумма углов выпуклого шестиугольника определяется по общей формуле 180°(n-2) и равна 180 ( 6 — 2 ) = 720 градусов. См. теорему о сумме углов многоугольника.

      При решении задач для нахождения площади произвольного (неправильного) шестиугольника используют метод трапеций, который заключается в разбиении фигуры на отдельные трапеции, площадь каждой из которых можно найти по известным всем формулам.

      Правильный шестиугольник

      Правильный шестиугольник — это шестиугольник, все стороны которого равны между собой.

      Свойства правильного шестиугольника

      • все внутренние углы равны между собой
      • каждый внутренний угол правильного шестиугольника равен 120 градусам
      • все стороны равны между собой
      • сторона правильного шестиугольника равна радиусу описанной окружности
      • правильный шестиугольник заполняет плоскость без пробелов и наложений
      • всі внутрішні кути рівні між собою
      • кожен внутрішній кут правильного шестикутника дорівнює 120 градусам
      • всі сторони рівні між собою сторона правильного шестикутника дорівнює радіусу описаного кола
      • правильний шестикутник заповнює плоскість без пропусків і накладень

      Формулы для правильного шестиугольника

      (по порядку следования формул)

      • Радиус описанной окружности (R) правильного шестиугольника равен его стороне (t)
      • Все внутренние углы равны 120 градусам
      • Радиус вписанной окружности (r) равен корню из трех, деленному на два и умноженному на длину стороны t (радиус описанной окружности R)
      • Периметр правильного шестиугольника (P) равен шести радиусам описанной окружности (R) или четыре корня из трех, умноженным на радиус вписанной окружности (r)
      • Площадь правильного шестиугольника равна трем корням из трех пополам, умноженным на квадрат радиуса описанной окружности (R) или квадрат стороны (t); либо площадь правильного шестиугольника равна двум корням из трех, умноженным на квадрат радиуса вписанной окружности (t)

      Задача

      Найти объем цилиндра, вписанного в правильную шестиугольную призму, каждое ребро которой равно t. Решение. Так как высота цилиндра Н равна высоте призмы и равна а, достаточно найти радиус основания цилиндра, который будет равен радиусу окружности, вписанной в правильный шестиугольник.Знайти об’єм циліндра, вписаного в правильну шестикутну призму, кожне ребро якої дорівнює t. Рiшення. Так як висота циліндра Н дорівнює висоті призми і дорівнює а, достатньо знайти радіус основи циліндра, який буде дорівнювати радіусу кола, вписаного в правильний шестикутник.

      Правильный многоугольник | Описание курса | Сумма углов многоугольника

      Видео:Шестиугольник в изометрииСкачать

      Шестиугольник в изометрии

      2.4.2 Построение правильных многоугольников по данной стороне

      Построение
      квадрата по данной его стороне L
      (рисунок
      34). На произвольной прямой откладывают
      отрезокAB, равный
      стороне квадратаL.

      Из любого
      конца отрезка, например из точкиA,
      восстанавливают перпендикуляр и на нем
      откладывают отрезокAD = L. Затем
      из точекB иDкак из центров
      проводят дуги радиусомR = Lи на
      пересечении их отмечают точкуС.

      Соединив прямыми точку Cс точкамиB иD, получают квадрат
      с заданной сторонойL.

      Построение
      правильного шестиугольника по данной
      его стороне
      L(рисунок 35).
      Известно, что сторона правильного
      шестиугольника равна радиусу окружности,
      описанной вокруг него.

      Поэтому, построив
      на произвольной прямой отрезокAB=L
      (рисунок 35, а), из концов его как из центров
      проводят две дуги радиусом R=L
      до взаимного пересечения их в точке О.

      Приняв точку О
      за центр, проводят окружность тем же
      радиусом R=L
      и делят ее на шесть равных частей. Точки
      деления являются вершинами правильного
      шестиугольника со стороной L
      (рисунок 35, б).

      • а б
      • Рисунок
        35
      • Построение
        правильного шестиугольника с помощью
        линейки и угольника с углами 60 и 30°
        показано на рисунке 36.

      Приближенный
      способ построения правильных
      многоугольников данной стороне
      AB (рисунок 37). Изложенный ниже
      способ заключается в том, что правильный
      многоугольник строят как вписанный в
      окружность.

      Из концов отрезкаАВрадиусом, равным этому отрезку, проводят
      две дуги до взаимного пересечения их в
      точкахОиО6.

      Из точекA иВк отрезкуAB восстанавливают перпендикуляры,
      и на пересечении их с проведенными
      дугами получают две вершины квадрата
      (на рисунке 37 отмечена одна из них).

      ЦентрO4окружности, описанной около квадрата,
      расположен в точке пересечения диагонали
      квадрата с вертикальной прямойOO6.

      Для построения вписанного пятиугольника
      отрезокO4O6делят пополам в точкеO5и из нее как из центра описывают окружность
      радиусом, равным отрезкуO5A.
      СторонаAB пять
      раз уложится на этой окружности.

      2.4.3 Построение правильных многоугольников, описанных около окружности

      Правильный
      описанный треугольник строят следующим
      образом
      (рисунок 38).

      Точки
      деления А, В, С
      являются вершинами правильного
      треугольника, описанного около окружности
      радиуса R1.

      Правильный
      описанный четырехугольник (квадрат)
      можно построить с помощью циркуля и
      линейки (рисунок 39). В заданной окружности
      проводят два взаимно перпендикулярных
      диаметра.

      Приняв точки пересечения
      диаметров с окружностью за центры,
      радиусом окружностиR описывают дуги до взаимного их
      пересечения в точкахА, В, С,D.

      Для
      построения правильного описанного
      шестиугольника
      необходимо вначале
      построить вершины описанного квадрата
      указанным выше способом
      (рисунок 40, а).

      Одновременно с определением
      вершин квадрата заданную окружность
      радиуса R делят
      на шесть равных частей в точках 1,
      2, 3, 4, 5, 6
      и
      проводят вертикальные стороны квадрата.

      Проведя через точки деления окружности
      2–5
      и 3–6
      прямые до пересечения их с вертикальными
      сторонами квадрата (рисунок 40, б), получают
      вершины А, В, D, Е
      описанного правильного шестиугольника.

      🔥 Видео

      Деление окружности на 3; 6; 12 равных частейСкачать

      Деление окружности на 3; 6; 12 равных частей

      Как нарисовать правильный пятиугольник | Видеоурок MATHANIMATIONСкачать

      Как нарисовать правильный пятиугольник | Видеоурок MATHANIMATION

      Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

      Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

      Задача 6 №27916 ЕГЭ по математике. Урок 133Скачать

      Задача 6 №27916 ЕГЭ по математике. Урок 133

      4K Как построить шестиугольник с заданной стороной, hexagon constructing with using a compassСкачать

      4K Как построить шестиугольник с заданной стороной, hexagon constructing with using a compass
  • Поделиться или сохранить к себе: