Окружность пересечение хорд аб и сд

Хорды пересекаются

Если хорды пересекаются, как этот факт можно использовать при решении задач?

Теорема

(Свойство отрезков пересекающихся хорд (пропорциональность хорд окружности))

Произведения длин отрезков пересекающихся хорд, на которые эти хорды делятся точкой пересечения, есть число постоянное.

То есть, если хорды AB и CD пересекаются в точке F, то

AF ∙ FB=CF ∙ FD

Окружность пересечение хорд аб и сдДано : окружность (O; R), AB и CD — хорды,

Окружность пересечение хорд аб и сд

Доказать : AF ∙ FB=CF ∙ FD

1) Проведём отрезки BC и AD.

2) Рассмотрим треугольники AFD и CFB.

Окружность пересечение хорд аб и сд∠AFD=∠CFB (как вертикальные);

Следовательно, треугольники AFD и CFB подобны (по двум углам).

Из подобия треугольников следует пропорциональность соответствующих сторон:

Окружность пересечение хорд аб и сд

то есть отрезки пересекающихся хорд пропорциональны.

По основному свойству пропорции:

Окружность пересечение хорд аб и сд

Что и требовалось доказать .

При решении задач с пересекающимися хордами можно использовать не только вывод теоремы, но также полученный в ходе её доказательства факт, что пересекающиеся хорды образуют пары подобных треугольников.

Через точку M, лежащую внутри окружности, проведена хорда, которая делится точкой M на отрезки, длины которых равны 6 см и 16 см. Найти расстояние от точки M до центра окружности, если радиус окружности равен 14 см.

Окружность пересечение хорд аб и сдДано : окружность (O; R), R=14 см, AB — хорда, M∈AB, AM=16 см, MB=6 см

Проведём через точку M диаметр CD.

Окружность пересечение хорд аб и сдПо свойству отрезков пересекающихся хорд:

Пусть OM=x см (x>0). Так как радиус равен 14 см, то MD= (14-x) см, CM=(14+x) см.

Составим и решим уравнение:

Следовательно, расстояние от точки M до центра окружности равно 10 см.

В окружности проведены хорды AB и CD , пересекающиеся в точке F. Найти длину отрезка AC, если AF=6, DF=8, BD=20.

Окружность пересечение хорд аб и сдДано : окружность (O; R), AB и CD — хорды,

Окружность пересечение хорд аб и сд

В треугольниках AFC и BFD:

∠AFC=∠BFD (как вертикальные);

∠ACF=∠DBF (как вписанные углы, опирающиеся на одну хорду AD).

Следовательно, треугольники AFC и BFD подобны (по двум углам). Поэтому

Видео:№1035. В окружности проведены хорды АВ и CD, пересекающиеся в точке Е. Найдите острыйСкачать

№1035. В окружности проведены хорды АВ и CD, пересекающиеся в точке Е. Найдите острый

Отрезки и прямые, связанные с окружностью. Теорема о бабочке

Окружность пересечение хорд аб и сдОтрезки и прямые, связанные с окружностью
Окружность пересечение хорд аб и сдСвойства хорд и дуг окружности
Окружность пересечение хорд аб и сдТеоремы о длинах хорд, касательных и секущих
Окружность пересечение хорд аб и сдДоказательства теорем о длинах хорд, касательных и секущих
Окружность пересечение хорд аб и сдТеорема о бабочке

Окружность пересечение хорд аб и сд

Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)

Отрезки и прямые, связанные с окружностью

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Конечная часть плоскости, ограниченная окружностью

Отрезок, соединяющий центр окружности с любой точкой окружности

Отрезок, соединяющий две любые точки окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Прямая, пересекающая окружность в двух точках

ФигураРисунокОпределение и свойства
ОкружностьОкружность пересечение хорд аб и сд
КругОкружность пересечение хорд аб и сд
РадиусОкружность пересечение хорд аб и сд
ХордаОкружность пересечение хорд аб и сд
ДиаметрОкружность пересечение хорд аб и сд
КасательнаяОкружность пересечение хорд аб и сд
СекущаяОкружность пересечение хорд аб и сд
Окружность
Окружность пересечение хорд аб и сд

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

КругОкружность пересечение хорд аб и сд

Конечная часть плоскости, ограниченная окружностью

РадиусОкружность пересечение хорд аб и сд

Отрезок, соединяющий центр окружности с любой точкой окружности

ХордаОкружность пересечение хорд аб и сд

Отрезок, соединяющий две любые точки окружности

ДиаметрОкружность пересечение хорд аб и сд

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

КасательнаяОкружность пересечение хорд аб и сд

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

СекущаяОкружность пересечение хорд аб и сд

Прямая, пересекающая окружность в двух точках

Видео:Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CDСкачать

Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CD

Свойства хорд и дуг окружности

ФигураРисунокСвойство
Диаметр, перпендикулярный к хордеОкружность пересечение хорд аб и сдДиаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.
Диаметр, проходящий через середину хордыДиаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.
Равные хордыОкружность пересечение хорд аб и сдЕсли хорды равны, то они находятся на одном и том же расстоянии от центра окружности.
Хорды, равноудалённые от центра окружностиЕсли хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.
Две хорды разной длиныОкружность пересечение хорд аб и сдБольшая из двух хорд расположена ближе к центру окружности.
Равные дугиОкружность пересечение хорд аб и сдУ равных дуг равны и хорды.
Параллельные хордыОкружность пересечение хорд аб и сдДуги, заключённые между параллельными хордами, равны.
Диаметр, перпендикулярный к хорде
Окружность пересечение хорд аб и сд

Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.

Диаметр, проходящий через середину хордыОкружность пересечение хорд аб и сд

Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.

Равные хордыОкружность пересечение хорд аб и сд

Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.

Хорды, равноудалённые от центра окружностиОкружность пересечение хорд аб и сд

Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.

Две хорды разной длиныОкружность пересечение хорд аб и сд

Большая из двух хорд расположена ближе к центру окружности.

Равные дугиОкружность пересечение хорд аб и сд

У равных дуг равны и хорды.

Параллельные хордыОкружность пересечение хорд аб и сд

Дуги, заключённые между параллельными хордами, равны.

Видео:№662. Хорды АВ и CD окружности пересекаются в точке Е. Найдите угол ВЕС, если ∪AD=54°, ∪BC= 70°.Скачать

№662. Хорды АВ и CD окружности пересекаются в точке Е. Найдите угол ВЕС, если ∪AD=54°, ∪BC= 70°.

Теоремы о длинах хорд, касательных и секущих

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Окружность пересечение хорд аб и сд

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Окружность пересечение хорд аб и сд

Окружность пересечение хорд аб и сд

ФигураРисунокТеорема
Пересекающиеся хордыОкружность пересечение хорд аб и сд
Касательные, проведённые к окружности из одной точкиОкружность пересечение хорд аб и сд
Касательная и секущая, проведённые к окружности из одной точкиОкружность пересечение хорд аб и сд
Секущие, проведённые из одной точки вне кругаОкружность пересечение хорд аб и сд

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Окружность пересечение хорд аб и сд

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Окружность пересечение хорд аб и сд

Окружность пересечение хорд аб и сд

Пересекающиеся хорды
Окружность пересечение хорд аб и сд
Касательные, проведённые к окружности из одной точки
Окружность пересечение хорд аб и сд
Касательная и секущая, проведённые к окружности из одной точки
Окружность пересечение хорд аб и сд
Секущие, проведённые из одной точки вне круга
Окружность пересечение хорд аб и сд
Пересекающиеся хорды
Окружность пересечение хорд аб и сд

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Окружность пересечение хорд аб и сд

Касательные, проведённые к окружности из одной точки

Окружность пересечение хорд аб и сд

Окружность пересечение хорд аб и сд

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Касательная и секущая, проведённые к окружности из одной точки

Окружность пересечение хорд аб и сд

Окружность пересечение хорд аб и сд

Окружность пересечение хорд аб и сд

Секущие, проведённые из одной точки вне круга

Окружность пересечение хорд аб и сд

Окружность пересечение хорд аб и сд

Окружность пересечение хорд аб и сд

Видео:Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Доказательства теорем о длинах хорд, касательных и секущих

Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).

Окружность пересечение хорд аб и сд

Окружность пересечение хорд аб и сд

Тогда справедливо равенство

Окружность пересечение хорд аб и сд

Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство

Окружность пересечение хорд аб и сд

откуда и вытекает требуемое утверждение.

Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).

Окружность пересечение хорд аб и сд

Окружность пересечение хорд аб и сд

Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство

Окружность пересечение хорд аб и сд

Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство

Окружность пересечение хорд аб и сд

откуда и вытекает требуемое утверждение.

Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).

Окружность пересечение хорд аб и сд

Окружность пересечение хорд аб и сд

Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство

Окружность пересечение хорд аб и сд

Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).

Окружность пересечение хорд аб и сд

Окружность пересечение хорд аб и сд

Точка B – точка касания. В силу теоремы 2 справедливы равенства

Окружность пересечение хорд аб и сд

откуда и вытекает требуемое утверждение.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Теорема о бабочке

Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.

Окружность пересечение хорд аб и сд

Окружность пересечение хорд аб и сд

Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:

Окружность пересечение хорд аб и сд

Окружность пересечение хорд аб и сд

Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим

Окружность пересечение хорд аб и сд

Окружность пересечение хорд аб и сд

Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим

Окружность пересечение хорд аб и сд

Окружность пересечение хорд аб и сд

Воспользовавшись теоремой 1, получим

Окружность пересечение хорд аб и сд

Окружность пересечение хорд аб и сд

Воспользовавшись равенствами (1) и (2), получим

Окружность пересечение хорд аб и сд

Окружность пересечение хорд аб и сд

Окружность пересечение хорд аб и сд

Окружность пересечение хорд аб и сд

Окружность пересечение хорд аб и сд

Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство

Окружность пересечение хорд аб и сд

откуда вытекает равенство

что и завершает доказательство теоремы о бабочке.

Видео:№662 (исправлено) Хорды АВ и CD окружности пересекаются в точке Е. Найдите угол ВЕС, если ∪AD=54°Скачать

№662 (исправлено) Хорды АВ и CD окружности пересекаются в точке Е. Найдите угол ВЕС, если ∪AD=54°

Математика

Окружность есть такая плоская кривая, у которой все точки находятся на равном расстоянии от одной точки, лежащей внутри ее и называемой центром.

Круг. Кругом называется часть плоскости, ограниченная окружностью.

Радиус. Радиусом называется отрезок, соединяющий центр с какой-нибудь точкой окружности. Радиус есть расстояние точки окружности от центра.

Из самого определения окружности следует, что все ее радиусы равны.

Окружность пересечение хорд аб и сд

На чертеже 86 кривая линия BCDAEB есть окружность, O ее центр, отрезки OA, OB, OC — радиусы. Эти отрезки равны

Диаметр. Отрезок, проходящий через центр от одной точки окружности до другой, называется диаметром.

Всякий диаметр состоит из двух радиусов, а так как все радиусы равны, то следовательно и все диаметры равны.

Дуга есть часть окружности.

Слово дуга иногда обозначают знаком ◡, так что дугу BC изображают письменно: ◡BC.

Хорда. Отрезок, соединяющий две какие-нибудь точки окружности, называется хордой. Хорда есть прямая, стягивающая две точки дуги.

На чертеже 86 линия AB есть диаметр, часть окружности BC есть дуга, прямая CD есть хорда.

Сегмент есть часть плоскости, содержащийся между дугой и хордой.

Сектор есть часть плоскости, содержащийся между двумя радиусами и дугой круга.

На чертеже 86 площадь COB есть сектор, а CKD сегмент.

Касательная есть прямая, имеющая с окружностью только одну общую точку, которая называется точкой касания.

Углом при центре называется угол, имеющий вершину в центре. На чертеже 86 прямая FG есть касательная, а E точка касания.

Теорема 55. Прямая может пересечь окружность только в двух точках.

Доказательство. Если бы прямая AB кроме двух точек M и N (черт. 87) имела бы еще третью точку пересечения L, то три точки окружности M, N, L, по свойству окружности, были бы на равном расстоянии от центра O, следовательно, три отрезка MO, NO, LO были бы равны: MO = NO = LO.

Окружность пересечение хорд аб и сд

Если же NO = LO, то вышло бы, что равные наклонные находятся на неравных расстояниях от перпендикуляра OQ, что противоречит свойству косвенных, следовательно, третьей точки пересечения быть не может (ЧТД).

Теорема 56. Диаметр делит окружность и круг на две равные части.

Доказательство. Перегнем верхнюю часть круга около диаметра CD (черт. 87) до совпадения ее с нижней частью, тогда все точки верхней совпадут с точками нижней части окружности, ибо в противном случае не все точки окружности находились бы на равном расстоянии от центра.

Видео:Окружность. 7 класс.Скачать

Окружность. 7 класс.

Зависимость между углами, дугами и хордами

Теорема 57. В двух равных кругах равным углам при центре соответствуют равные дуги.

Дано. Две окружности описаны (черт. 88) одними и теми же радиусами и углы при центре равны:

Требуется доказать, что ◡AB = ◡A’B’.

Окружность пересечение хорд аб и сд

Доказательство. Наложим круг O’ на круг O так, чтобы центр O’ совпал с центром O и сторона OA со стороною O’A’. Точка A’ по равенству радиусов совпадает с точкой A. По равенству углов A’O’B’ и AOB отрезок O’B’ пойдет по отрезку OB и по равенству радиусов точка B’ упадет в точку B. Две крайние точки дуги A’B’ совпадут с двумя крайними точками дуги AB, следовательно, и все промежуточные точки дуги A’B’ совпадут с промежуточными точками дуги AB, так как окружность O’ совпадает с окружностью O, ибо они описаны равными радиусами.

Теорема 58 (обратная 57). Равным дугам соответствуют равные углы.

Дано. Дуги AB и A’B’ равны (◡AB = ◡A’B’) (черт. 88).

Требуется доказать, что ∠AOB = ∠A’O’B’.

Доказательство. Наложим сектор A’O’B’ на сектор AOB так, чтобы отрезок O’A’ совпал с отрезком OA. Дуга A’B’ упадет на дугу AB и B’ упадет в B. Отрезок B’O’ совпадет с отрезком BO и угол AOB совпадет с углом A’O’B’, следовательно,

Теорема 59. Диаметр больше всякой хорды.

Даны диаметр CD и хорда MN (черт. 87).

Требуется доказать, что CD > MN.

Доказательство. Проведем радиусы MO и NO. Ломаная линия MON больше прямой MN

MON > MN или MO + ON > MN

Так как MO = CO, NO = OD, то заменяя MO и NO равными им величинами, получим неравенства:

CO + OD > MN или CD > MN (ЧТД).

Теорема 60. Равные хорды стягивают равные дуги.

Даны равные хорды AB и CD (черт. 89) (AB = CD).

Требуется доказать, что ◡AB = ◡CD.

Окружность пересечение хорд аб и сд

Доказательство. Соединив точки A, B, C, D с центром, имеем

OA = OC и OB = OD как радиусы, AB = CD по условию.

Следовательно, ∠AOB = ∠COD, откуда ◡AB = ◡CD (ЧТД).

Теорема 61 (обратная 60). Равные дуги стягиваются равными хордами.

Дано. Дуги AB и CD равны (черт. 89) (◡AB = ◡CD).

Требуется доказать, что AB = CD.

Доказательство. Два треугольника AOB и COD равны, ибо OA = OC и OB = OD как радиусы, ∠AOB = ∠COD ибо по условию дуги AB и CD равны, а потому и углы равны (теорема 58). Следовательно, AB = CD (ЧТД).

Теорема 62. Если дуги меньше полуокружности, то против большей дуги лежит большая хорда.

Дано. Дуга BD больше дуги AC (черт. 90) (◡BD > ◡AC).

Требуется доказать, что BD > AC.

Окружность пересечение хорд аб и сд

Доказательство. Соединим точки A, C, B, D с центром O. В двух треугольниках AOC и BOD OA = OB и OC = OD как радиусы, BOD > AOC. Следовательно, BD > AC (теорема 23) (ЧТД).

Теорема 63 (обратная 62). Против большей хорды лежит большая дуга.

Дано. Хорда BD больше хорды AC (черт. 90) (BD > AC).

Требуется доказать, что ◡BD > ◡AC.

Доказательство. В двух треугольниках AOC и BOD OA = OB и OC = OD как радиусы, BD > AC по условию. Поэтому ∠BOD > ∠AOC (теорема 24). Следовательно, ◡BD > ◡AC (ЧТД).

Видео:№144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВССкачать

№144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВС

Взаимное отношение хорд и их расстояний от центров

Теорема 64. Радиус, перпендикулярный к хорде, делит как хорду так и дугу пополам.

Радиус OC перпендикулярен к хорде AB (черт. 91).

Требуется доказать, что AD = BD и ◡AC = ◡CB.

Окружность пересечение хорд аб и сд

Доказательство. Соединим точки A и B с центром O. Равные наклонны OA и OB находятся на равных расстояниях от перпендикуляра OC, следовательно, AD = DB.

Если же перпендикуляр CD восставлен из середины отрезка AB, то его точка C находится на равном расстоянии от концов перпендикуляра, поэтому хорды AC и CB равны, а следовательно,

т. е. дуга AB делится перпендикуляром OC пополам (ЧТД).

Следствие. Перпендикуляр, восставленный из середины хорды, проходит через центр.

Доказательство. Так как центр находится на равном расстоянии от концов хорды, то он находится на перпендикуляре, восставленном из середины хорды.

Теорема 65. Равные хорды находятся на равном расстоянии от центра.

Дано. Хорды AB и CD равны: AB = CD (черт. 92).

Требуется доказать, что их расстояния от центра равны, т. е.

Окружность пересечение хорд аб и сд

Доказательство. Соединив точки A и C с центром O, имеем два равных прямоугольных треугольника AEO и COF, ибо OA = OC как радиусы, AE = CF как половины равных хорд (теорема 64). Следовательно,

Теорема 66 (обратная 65). На равных расстояниях от центра находятся равные хорды.

Дано. Расстояния хорд AB и CD от центра равны, т. е.

Требуется доказать, что AB = CD.

Доказательство. Два прямоугольных треугольника AEO и COF равны, ибо имеют по равной гипотенузе и равному катету. Действительно, OE = OF по условию, OA = OC как радиусы, следовательно, AE = CF или ½AB = ½CD, откуда

Теорема 67. Большая хорда к центру ближе меньшей.

Дано. Хорда AB больше хорды AC (черт. 93), т. е. AB > AC.

Требуется доказать, что OD ⊥ AO.

Требуется доказать, что AF касательная к окружности.

Окружность пересечение хорд аб и сд

Доказательство. Всякая другая точка B перпендикуляра AB находится на расстоянии BO большем AO, ибо наклонная больше перпендикуляра, следовательно точка B находится вне окружности. Таким образом прямая AB имеет с окружностью только одну общую точку A, следовательно, она будет касательной (ЧТД).

Теорема 69 (обратная 68). Касательная к окружности, проведенная в конец радиуса, перпендикулярна к радиусу.

Дано. Прямая AF касается окружности в точке A (черт. 94).

Требуется доказать, что AF ⊥ OA.

Доказательство. Прямая AB как касательная имеет с окружностью только одну общую точку A. Всякая другая точка B лежит вне окружности, следовательно, всякий отрезок OB больше OA. Таким образом, отрезок OA есть кратчайшее расстояние точки O от AB, следовательно, OA ⊥ AB (ЧТД).

Теорема 70. Между параллельными хордами находятся равные дуги.

Дано. Хорды AB и CD параллельны: AB || CD (черт. 95).

Требуется доказать, что ◡AC = ◡BD.

Окружность пересечение хорд аб и сд

Доказательство. a) Из центра окружности O опустим перпендикуляр OM на хорду AB, тогла отрезок OM перпендикулярен и к хорде CD.

Вычитая второе равенство из первого, получим:

◡CM — ◡AM = ◡MD — ◡MB или
◡AC = ◡BD.

b) Если параллельные хорды AB и EF (черт. 95) лежат по обе стороны центра, то, продолжив прямую OM до пересечения с окружностью в точке G, имеем:

Так как полуокружности MAG и MBG равны

MAG = MBG, то следовательно,
MAG — ◡MA — ◡GE = MBG — ◡MB — ◡GF
или ◡AE = ◡BF (ЧТД).

Видео:№666. Хорды АВ и CD пересекаются в точке Е. Найдите ED, если: а) АЕ = 5, ВЕСкачать

№666. Хорды АВ и CD пересекаются в точке Е. Найдите ED, если: а) АЕ = 5, ВЕ

Относительное положение двух окружностей

Концентрические и эксцентрические круги. Два круга называются концентрическими, когда они имеют один общий центр, и эксцентрическими, когда из центры не совпадают.

На чертеже 96 представлены круги концентрические и на чертежах 97, 98, 99, 100 и 101 круги эксцентрические.

Окружность пересечение хорд аб и сд

Внешние и внутренние круги. Круги называются внешними, когда все точки одного лежат вне площади другого круга, и внутренними, когда все точки одного лежат внутри площади другого круга.

На чертежах 97 и 99 изображены круги внешние, на чертежах 96, 98 и 100 круги внутренние.

Касательные окружности. Окружности называются касательными, когда они имеют одну общую точку.

Окружность пересечение хорд аб и сд

Общая точка двух касательных окружностей называется их точкой соприкосновения. Соприкосновение называется внешним, когда два круга, имея общую точку, лежат один вне другого, и внутренним, когда один круг лежит внутри другого. На черт. 99 имеем случай внешнего, а на чертеже 100 случай внутреннего соприкосновения.

Пересекающиеся окружности. Окружности называются пересекающимися, когда они имеют две общие точки (черт. 101).

Окружность пересечение хорд аб и сд

Линия центров есть отрезок, соединяющий центры двух кругов.

Теорема 71. Две окружности, имеющие общую точку на линии центров, другой общей точки иметь не могут.

Дано. Две окружности с центрами O и O’ имеют общую точку A (черт. 102).

Требуется доказать, что другой общей точки у них нет.

Окружность пересечение хорд аб и сд

Доказательство. Положим, существует другая общая точка B, следовательно,

OB = OA и O’B = O’A.

Складывая эти равенства, мы имели бы

OB + O’B = OA + O’A или
OB + O’B = OO’

равенство несообразное, ибо ломаная не может равняться прямой.

Итак, другой общей точки быть не может (ЧТД).

Теорема 72. Две окружности, имеющие одну общую точку вне линии центров, имеют и другую общую точку по другую сторону линии центров.

Дано. Две окружности, центры которых O и O’, имеют общую точку A вне отрезка OO’ (черт. 103), соединяющей центры.

Требуется доказать, что существует и другая общая точка по другую сторону центров.

Окружность пересечение хорд аб и сд

Доказательство. Из точки A опустим на линию центров перпендикуляр AG и на продолжении его отложим отрезок BG, равный AG.

Докажем, что точка B будет другая общая точка. Точка B лежит на окружности O, ибо AO = BO как равные наклонные, находящиеся на равных расстояниях AG и BG от перпендикуляра OO’. Точка B лежит на окружности O’, ибо AO’ = BO’ как равные наклонные, находящиеся на равных расстояниях AG и BG от перпендикуляра OO’, следовательно, точка B есть другая общая точка (ЧТД).

Теорема 73. Если две окружности пересекаются в двух точках, то линия центров перпендикулярна и делит пополам хорду, соединяющую точки пересечения.

Дано. Точки A и B есть точки пересечения (черт. 104) двух окружностей.

Требуется доказать, что AG = BG и AB ⊥ OO’.

Окружность пересечение хорд аб и сд

Доказательство. Треугольники OAO’ и OBO’ равны, ибо OO’ сторона общая.

OA = OB как радиусы окружности O.

O’A = O’B как радиусы окружности O’.

Треугольники AOG и BOG равны, ибо OG сторона общая, AO = BO как радиусы, ∠AOG = ∠BOG по доказанному. Следовательно, AG = BG (хорда AB делится линией центров пополам), ∠AGO = ∠BGO (хорда AB перпендикулярна к линии центров).

Таким образом, хорда AB делится пополам и перпендикулярна к линии центров OO’ (ЧТД).

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Расстояние между центрами окружностей

1. Если две окружности пересекаются в двух точках, расстояние центров меньше суммы и больше разности радиусов.

Действительно, с одной стороны (черт. 104)

2. Если две окружности касаются, расстояние центров равно сумме радиусов, если соприкосновение внешнее, и разности радиусов, если соприкосновение внутреннее.

Окружность пересечение хорд аб и сд

Из чертежа 105 видно, что

а из чертежа 106

3. Если одна окружность лежит вне другой, расстояние центров больше суммы радиусов.

Из чертежа 107 видно, что

4. Если окружность лежит одна внутри другой, расстояние центров меньше разности радиусов.

Действительно, из чертежа 108 видно, что

Для того, чтобы имело место равенство, нужно дробь во второй части неравенства (1) увеличить. Для этого следует ее знаменатель уменьшить.

Положим, мы нашли, что имеет место равенство

Разделим дугу AB на равное число таких частей, чтобы каждая часть была менее GF; тогда одна из точек деления i упадет в промежутке между G и F. Дуги AB и Ai соизмеримы, следовательно,

Разделив равенства (b) на (a), находим

равенство несообразное, ибо первая часть его больше, а вторая меньше 1, следовательно, допущение (1) не имеет места.

AOB/AOF ∆ ObC
∆ ObD = ∆ OcD
∆ OcA = ∆ OdA
∆ OdB = ∆ OaB

ибо они, будучи прямоугольными, имеют по равной гипотенузе OC, OD, OA, OB и равным катетам, следовательно,

aC = bC
aB = dB
cA = dA
cD = bD

📽️ Видео

Геометрия В окружности проведены хорды AB и CD, пересекающиеся в точке M. Дано: AM/МВ =5/7Скачать

Геометрия В окружности проведены хорды AB и CD, пересекающиеся в точке M. Дано: AM/МВ =5/7

Геометрия Докажите, что если хорды AB и CD окружности пересекаются в точке M, то AM٠MB = DM٠MCСкачать

Геометрия Докажите, что если хорды AB и CD окружности пересекаются в точке M, то AM٠MB = DM٠MC

Теорема об отрезках хорд и секущихСкачать

Теорема об отрезках хорд и секущих

Общая хорда двух окружностейСкачать

Общая хорда двух окружностей

Геометрия Хорды AB и CD окружности пересекаются в точке M CM = 4 см DM = 6 см AM на 2 см больше BMСкачать

Геометрия Хорды AB и CD окружности пересекаются в точке M CM = 4 см DM = 6 см AM на 2 см больше BM

Две теоремы об отрезках, связанных с окружностьюСкачать

Две теоремы об отрезках, связанных с окружностью

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.

ищем хорду в окружности. огэ 1 часть геометрияСкачать

ищем хорду в окружности. огэ 1 часть геометрия

Окружность, касательная, секущая и хорда | МатематикаСкачать

Окружность, касательная, секущая и хорда | Математика
Поделиться или сохранить к себе: