Как искать сумму векторов в параллелепипеде

Сумма нескольких векторов

Сумма нескольких векторов а 1, а 2, а 3, … , а n, это вектор, получающийся после ряда последовательных сложений: к вектору а 1 прибавляется вектор а 2, к полученному вектору прибавляется вектор а 3 и т.д.

Из определения вытекает такое построение

Как искать сумму векторов в параллелепипеде

Видео:44. Правило параллелепипедаСкачать

44. Правило параллелепипеда

Правило многоугольника или правило цепи

Из произвольного начала О строим вектор ОА 1 = а 1, из точки А 1, как из начала, строим вектор А 1 А 2 = а 2, из точки А 2 строим вектор А 2 А 3 = а 3 и т.д. Вектор ОА n (на рисунке n = 6) есть сумма векторов а 1, а 2, … , а n.

Видео:Правило параллелепипеда для векторовСкачать

Правило параллелепипеда для векторов

Свойство сочетательности

Слагаемые векторы можно группировать как угодно.

Так, если найти сначала сумму векторов

и к ней прибавить вектор а 1 ( ОА 1), то получим то же вектор:

Видео:10 класс, 44 урок, Правило параллелепипедаСкачать

10 класс, 44 урок, Правило параллелепипеда

Правило параллелепипеда

Если три вектора а , b , с после приведения к общему началу не лежат в одной плоскости, то сумму а + b + c можно найти таким построением:

Как искать сумму векторов в параллелепипеде

Из любого начала О строим векторы ОА = а , ОВ = b , ОС = с , на отрезках ОА , ОВ , ОС , как на ребрах, строим параллелепипед. Вектор диагонали OD есть сумма векторов a , b , и c (так как ОА = а , АК = ОВ = b , KD = OC = c и OD = OA + AK + KD ).

К векторам, которые (после приведения к общему началу) лежат в одной плоскости, это построение неприменимо.

Видео:Координаты вектора в пространстве. 11 класс.Скачать

Координаты вектора  в пространстве. 11 класс.

Правило параллелепипеда. Разложение вектора

Вы будете перенаправлены на Автор24

Видео:Сложение и вычитание векторов. Практическая часть. 11 класс.Скачать

Сложение и вычитание векторов. Практическая часть. 11 класс.

Правило параллелепипеда

Для правила сложения трех векторов рассмотрим следующую задачу.

Дан прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Доказать, что $overrightarrow+overrightarrow+overrightarrow=overrightarrow$

Как искать сумму векторов в параллелепипеде

Доказательство.

Воспользуемся свойством правила треугольника сложения двух векторов $overrightarrow+overrightarrow=overrightarrow$, получим:

Так как $overrightarrow=overrightarrow, overrightarrow=overrightarrow$

Из этой задачи получаем следующее правило для нахождения сложения трех векторов. Чтобы найти сумму трех векторов $overrightarrow,overrightarrow и overrightarrow$ нужно от произвольной точки $O$ отложить векторы $overrightarrow=overrightarrow$, $overrightarrow=overrightarrow$ и $overrightarrow=overrightarrow$ и построим параллелепипед на этих векторах. Тогда вектор диагонали $overrightarrow$ и будет суммой этих трех векторов. Это правило называется правилом параллелепипеда для сложения трех векторов.

Видео:Сложение векторов. Правило параллелограмма. 9 класс.Скачать

Сложение векторов. Правило параллелограмма. 9 класс.

Разложение вектора по двум неколлинеарным векторам

Вспомним сначала, какие векторы называются компланарными.

Два вектора, которые параллельны одной плоскости называются компланарными.

Произвольный вектор $overrightarrow

$ можно разложить по трем некомпланарным векторам $overrightarrow, overrightarrow$ и $overrightarrow$ с единственными коэффициентами разложения.

Математически это можно записать следующим образом

Доказательство.

Существование: Пусть нам даны три некомпланарных вектора $overrightarrow, overrightarrow$ и $overrightarrow$. Выберем произвольную точку $O$ и построим следующие векторы:

[overrightarrow=overrightarrow, overrightarrow=overrightarrow, overrightarrow=overrightarrow и overrightarrow

=overrightarrow]

Рассмотрим следующий рисунок:

Как искать сумму векторов в параллелепипеде

Произведем следующие дополнительные построения. Проведем через точку $P$ прямую, которая будет параллельна вектору $overrightarrow$. Пусть эта прямая пересекает плоскость $OAB$ в точке $P_1$. Далее, проведем через точку $P_1$ прямую, которая будет параллельна вектору $overrightarrow$. Пусть эта прямая пересекает прямую $OA$ в точке $P_2$ (смотри рисунок выше).

Воспользуемся свойством правила треугольника сложения двух векторов $overrightarrow+overrightarrow=overrightarrow$, получим:

Так как векторы $overrightarrow$ и $overrightarrow$ коллинеарны, то

Так как векторы $overrightarrow

$ и $overrightarrow$ коллинеарны, то

Так как векторы $overrightarrow

$ и $overrightarrow$ коллинеарны, то

Тогда, получаем, что

Существование разложения доказано.

Единственность: Предположим противное. Пусть существует еще одно разложение вектора $overrightarrow

$ по векторам $overrightarrow, overrightarrow$ и $overrightarrow$:

Вычтем эти разложения друг из друга

Из этого получаем

Теорема доказана.

Сложение и вычитание векторов

Видео:№358. Дан параллелепипед ABCDA1B1C1D1. Назовите вектор, начало и конец которого являются вершинамиСкачать

№358. Дан параллелепипед ABCDA1B1C1D1. Назовите вектор, начало и конец которого являются вершинами

Сложение векторов по правилу параллелограмма

Правило параллелограмма

Если слагаемые a и b не коллинеарны, то

c=a+b

Как искать сумму векторов в параллелепипеде

Видео:10 класс, 41 урок, Сумма нескольких векторовСкачать

10 класс, 41 урок, Сумма нескольких векторов

Сложение векторов по правилу треугольника

Правило треугольника

Как искать сумму векторов в параллелепипеде

Суммой векторов a (на рисунке зелёный вектор ) и b (на рисунке синий вектор ) называется третий вектор c (на рисунке красный вектор ) , получаемый следующее построение:

Нельзя смешивать понятие «сумма отрезков» с понятием «сумма векторов».

Видео:10 класс, 43 урок, Компланарные векторыСкачать

10 класс, 43 урок, Компланарные векторы

Правило параллелепипеда

Как искать сумму векторов в параллелепипеде

Если три вектора a, b, c после приведения к общему началу не лежат в одной плоскости , то их сумма равна диагонали параллелепипеда

d=a+b+c

Видео:10 класс, 40 урок, Сложение и вычитание векторовСкачать

10 класс, 40 урок, Сложение и вычитание векторов

Сложение противоположных векторов

Сумма противоположных векторов равна нуль-вектору, т.е.

Как искать сумму векторов в параллелепипеде

a+(-a)=0

Видео:Сложение векторов. 9 класс.Скачать

Сложение векторов. 9 класс.

Свойство переместительности ( переместительный закон )

Как искать сумму векторов в параллелепипеде

От перестановки слагаемых сумма векторов не меняется.

с=a+b= b+a

Видео:§20 Нахождение объёма параллелипипедаСкачать

§20 Нахождение объёма параллелипипеда

Сочетательное свойство ( сочетательный закон )

Как искать сумму векторов в параллелепипеде

Слагаемые векторы можно группировать как угодно.

a+(b+c+d) = a+b+c+d

Видео:СУММА ВЕКТОРОВ правило треугольникаСкачать

СУММА ВЕКТОРОВ правило треугольника

Вычитание векторов

Вычесть вектор а (вычитаемое) из вектора b (уменьшаемое) значит найти новый вектор x (разность), который в сумме с вектором а даёт вектор b.
Разность векторов обозначается: a-b
Вычитание есть действие обратное сложению (сложение векторов).
Вычитание векторов показаны на рисунках ниже:

Примечание
Модуль разности может быть меньше модуля «уменьшаемого», но может быть и больше или равен ему. Эти случаи показаны на рисунке выше.

📹 Видео

№359. Дан параллелепипед ABCDA1B1C1D1. а) Разложите вектор BD1 по векторам ВА, ВС и ВВ1.Скачать

№359. Дан параллелепипед ABCDA1B1C1D1. а) Разложите вектор BD1 по векторам ВА, ВС и ВВ1.

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Математика без Ху!ни. Смешанное произведение векторовСкачать

Математика без Ху!ни. Смешанное произведение векторов

8 класс, 44 урок, Законы сложения векторов. Правило параллелограммаСкачать

8 класс, 44 урок, Законы сложения векторов. Правило параллелограмма

8 класс, 43 урок, Сумма двух векторовСкачать

8 класс, 43 урок, Сумма двух векторов

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.
Поделиться или сохранить к себе: