Как доказать что многоугольник вписан в окружность

Правильный многоугольник вписан

Правильный многоугольник вписан в окружность и описан около окружности.

ABCDE… — вписанный в окружность и описанный около окружности.

Как доказать что многоугольник вписан в окружностьПусть точки A, B и C — соседние вершины некоторого правильного многоугольника.

Проведём биссектрисы углов A и B многоугольника. Обозначим их точку пересечения через O.

Углы A и B равны (как углы правильного многоугольника). Пусть ∠A=∠B=α.

Биссектрисы равных углов образуют равные углы. Значит, ∠OAB=∠OBA=α/2. Следовательно, треугольник AOB — равнобедренный с основанием AB (по признаку).

Проведём отрезок OC. Рассмотрим треугольники AOB и COB.

1) AB=CB (как стороны правильного многоугольника).

2) BO — общая сторона.

3) ∠OBA=∠OBC=α/2 (так как BO — биссектриса по построению).

Значит, треугольники AOB и COB равны (по двум сторонам и углу между ними). Следовательно, треугольник COB также является равнобедренным и его углы при основании равны α/2.

Поскольку ∠С=∠A=∠B=α, а ∠OCB=α/2, то CO является биссектрисой угла C.

Аналогично проводим отрезки DO, EO и т. д. и доказываем, что они являются биссектрисами углов D, E и т.д. и образуют равные равнобедренные треугольники.

Таким образом, все биссектрисы многоугольника ABCDE… пересекаются в точке O, а значит, точка O является центром вписанной в ABCDE… окружности.

Как доказать что многоугольник вписан в окружностьПо свойству равнобедренного треугольника, его высота и медиана, проведённые к основанию, совпадают, то есть являются серединными перпендикулярами.

Значит, O — точка пересечения серединных перпендикуляров к сторонам многоугольника ABCDE… Отсюда следует, что O — центр описанной около этого многоугольника окружности.

Таким образом, любой правильный многоугольник является вписанным в окружность и описанным около окружности.

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Вписанные многоугольники

В основном курсе геометрии доказывается, что около всякого треугольника можно описать окружность. Оказывается, для четырехугольников это уже не имеет место.

Теорема 5. Около четырехугольника можно описать окружность, тогда и только тогда, когда сумма его противоположных углов равна 180°.

Доказательство. Пусть ABCD — четырехугольник, около которого описана окружность (рис. 19, а). Докажем, что ?B + ?D = 180°. Действительно, эти углы измеряются половинами соответствующих дуг ADC и ABC, которые вместе составляют всю окружность. Следовательно, сами углы в сумме измеряются половиной дуги окружности, т.е. их сумма равна 180°.

Как доказать что многоугольник вписан в окружность

Обратно, пусть в четырехугольнике ABCD сумма противоположных углов равна 180°. Через вершины A, B, C проведем окружность. Предположим, что эта окружность не проходит через вершину D (рис. 19, б). Обозначим точку пересечения окружности с прямой AD через D’. Тогда четырехугольник ABCD’ вписан в окружность и, следовательно, ?B +?D’=180°. Но по условию ?B +?D = 180°. Поэтому ?D =?D’, что невозможно, так как прямые DC и D’C не являются параллельными. Полученное противоречие показывает, что окружность, проходящая через точки A, B и C должна пройти и через точку D.

Теорема 6. В выпуклый четырехугольник можно вписать окружность, тогда и только тогда, когда суммы его противоположных сторон равны.

Доказательство. Пусть ABCD — четырехугольник, в который вписана окружность, касающаяся его сторон в точках M, N, P, Q (рис. 20, а). Дока­жем, что AB + CD = BC + AD. Действительно, из равенства отрезков касательных, проведенных к окружности из одной точки следуют равенства: AM = AQ, BM = BN, CN = CP, DP = DQ. Поэтому, AB + CD = AM + MB + CP + PD = AQ + QD + BN + NC = AD + BC.

Как доказать что многоугольник вписан в окружность

Обратно, пусть в выпуклом четырехугольнике ABCD выполняется равенство AB + CD = BC + AD. Покажем, что в него можно вписать окружность. Для этого достаточно проверить, что биссектрисы углов этого четырехугольника пересекаются в одной точке. Эта точка будет равноудалена от всех сторон четырехугольника и, следовательно, будет центром искомой вписанной окружности. Если в данном четырехугольнике выполняется равенство AB=BC, то этот четырехугольник ромб. Ясно, что биссектрисы углов ромба пересекаются в одной точке — точке пересечения его диагоналей. Пусть ABBC. Предположим для определенности AB > BC (рис. 20, б). Из условия AB + CD = BC + AD следует, что AB — BC = AD — CD. Возьмем на AB точку E так, что BE=BC. Тогда AE = AB-BC. Возьмем на AD точку F так, что DF=DC. Тогда AF = AD — CD. Следовательно, AE=AF.

Треугольники AEF, BCE, CDF — равнобедренные. Поэтому биссектрисы углов A, B, D являются серединными перпендикулярами к отрезкам EF, EC, CF. Следовательно, они пересекаются в одной точке — центре окружности, описанной около треугольника EFC. Эта точка будет равноудалена от всех сторон исходного четырехугольника, т.е. будет искомым центром вписанной окружности.

Теорема Птолемея для четырехугольника, вписанного в окружность, утверждает, что произведение его диагоналей равно сумме произведений противоположных сторон. Мы докажем более сильную теорему.

Теорема 7. Произведение диагоналей произвольного четырехугольника меньше или равно сумме произведений его противоположных сторон, причем равенство достигается только в случае четырехугольника, вписанного в окружность.

Доказательство. Пусть ABCD — четырехугольник. Воспользуемся инверсией с центром в точке A и радиусом R (рис. 21). Напомним, что при инверсии точкам X, отличным от A, сопоставляются точки X’ на луче AX, для которых При этом окружности, не проходящие через точку A, переходят в окружности, а окружности, проходящие через точку A, за исключением самой точки A, переходят в прямые.

Пусть точки B, C и D переходят соответственно в точки B’, C’ и D’. Тогда треугольники ABC и A’C’B’, ADC и AC’D’, ABD и AD’B’ подобны и, следовательно, имеют место равенства

Как доказать что многоугольник вписан в окружность

Складывая почленно эти равенства, получим

Как доказать что многоугольник вписан в окружность

Следовательно, имеет место неравенство

При этом, равенство достигается только в случае, когда точки B’, C’, D’ принадлежат одной прямой. Это выполняется только в случае, если точки B, C, D принадлежат окружности, проходящей через точку A.

Как доказать что многоугольник вписан в окружность

Рассмотрим теперь пятиугольники, вписанные в окружность.

Теорема 8. Сумма любых двух несмежных углов вписанного пятиугольника больше 180°.

Доказательство следует из того, что углы A и C пятиугольника ABCDE опираются на дуги, в сумме составляющие всю окружность плюс дугу DE (рис. 22).

Естественный вопрос, который возникает после этого — является полученное условие достаточным для того, чтобы около пятиугольника можно было описать окружность?

Пример такого пятиугольника легко построить. Возьмем какой-нибудь вписанный пятиугольник ABCDE (рис. 23) и, продолжая две его стороны, построим пятиугольник ABCD’E’ так, чтобы сторона D’E’ была параллельна DE. Тогда углы этого пятиугольника будут равны углам исходного, и около него нельзя описать окружность.

Как доказать что многоугольник вписан в окружность

Поставим другой вопрос, связанный с достаточным условием вписанности пятиугольника. Пусть ABCDE — пятиугольник, сумма любых двух несмежных углов которого больше 180°. Существует ли пятиугольник A’B’C’D’E’ с такими же углами, около которого можно описать окружность?

Прежде чем ответить на этот вопрос выразим углы между диагоналями вписанного пятиугольника ABCDE, выходящими из одной вершины через углы самого пятиугольника.

Легко видеть, что ?CAD = ?B + ?E — 180°. Аналогичным образом выражаются и другие углы (рис. 24).

Вернемся теперь к поставленному вопросу. Для ответа на него рассмотрим какую-нибудь окружность и разделим ее на дуги, равные удвоенным углам между диагоналями исходного пятиугольника, выходящим из одной вершины. Концы этих дуг будут вершинами искомого пятиугольника вписанного в окружность.

Таким образом, имеет место следующая теорема.

Теорема 9. Для произвольного пятиугольника ABCDE, суммы любых двух несмежных углов которого больше 180°, существует пятиугольник A’B’C’D’E’ с такими же углами, около которого можно описать окружность.

Ситуация с вписанными в окружность семиугольниками, девятиугольниками и т. д. аналогична рассмотренной ситуации с пятиугольниками.

Для вписанных многоугольников с четным числом сторон ситуация аналогична ситуации с вписанным четырехугольником.

Видео:9 класс, 23 урок, Окружность, вписанная в правильный многоугольникСкачать

9 класс, 23 урок, Окружность, вписанная в правильный многоугольник

Вписанные и описанные многоугольники — формулы, свойства и примеры с решением

Содержание:

Рассмотрим вопрос о взаимном расположении прямой и окружности. Ранее уже отмечалось, что возможны три случая взаимного расположения прямой и окружности:

  1. прямая имеет только две общие точки с окружностью;
  2. прямая имеет только одну общую точку с окружностью;
  3. прямая не имеет общих точек с окружностью.

Если прямая имеет две общие точки с окружностью, то она называется секущей.

Видео:Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)

Понятие о вписанных и описанных многоугольниках

Взаимное расположение окружности со (О, R) с центром в точке О радиуса R и прямой I характеризуется соотношением между расстоянием d(0, I) от центра О окружности до прямой I и радиусом R окружности. Докажем это.

1) Прямая I имеет только две общие точки с окружностью, если расстояние от центра окружности до прямой I меньше радиуса окружности, т. е. Как доказать что многоугольник вписан в окружность

Как доказать что многоугольник вписан в окружность

Пусть прямая I не проходит через центр О окружности и расстояние Как доказать что многоугольник вписан в окружность. Обозначим OF Как доказать что многоугольник вписан в окружность— перпендикуляр, проведенный из точки О к прямой I, тогда OF = m. Пусть точки А и В лежат на прямой I

так, что Как доказать что многоугольник вписан в окружность. Докажем, что точки А и В принадлежат окружности.

Действительно, так как по теореме Пифагора

Как доказать что многоугольник вписан в окружностьКак доказать что многоугольник вписан в окружность

Таким образом, точки А и В — общие точки прямой и окружности. Докажем, что других общих точек прямая I и окружность Как доказать что многоугольник вписан в окружностьне имеют.

Предположим, что существует еще одна точка X — общая для окружности и прямой. Тогда центр окружности О равноудален от точек А, В, и X, а значит, он лежит на серединных перпендикулярах Как доказать что многоугольник вписан в окружностьк отрезкам АВ и ВХ, т. е. О — точка перессечения серединных перпендикуляровКак доказать что многоугольник вписан в окружность. Но так какКак доказать что многоугольник вписан в окружность,. Получили противоречие. Значит, наше предположение не верно и других общих точек прямой и окружности нет.

Если прямая I проходит через центр О окружности, т. е. d(0, Z) = 0, то она пересекает окружность в двух точках, которые являются концами диаметра, лежащего на этой прямой.

Как доказать что многоугольник вписан в окружность

2) Прямая I имеет только одну общую точку с окружностью, если расстояние от центра окружности до прямой I равно радиусу окружности, т. е. если d(0, I) = R.

Пусть расстояние от центра окружности до прямой I равно радиусу окружности, а точка F — основание перпендикуляра, проведенного из центра окружности к прямой I (рис. 2). Тогда OF = R, а значит, точка F лежит на окружности. Других общих точек прямая и окружность не имеют. Действительно, для любой точки X прямой I, не совпадающей с точкой F, выполняется условие ОХ > OF, OF = R, так; как наклонная ОХ больше перпендикуляра OF.

Следовательно, точка X не лежит на окружности.

3) Прямая I не имеет общих точек с окружностью, если расстояние от центра О окружности до прямой I больше радиуса окружности, т. е. если d(0, I) > R.

Пусть расстояние от центра О окружности до прямой I больше радиуса R. Обозначим буквой F основание перпендикуляра, проведенного из центра О окружности к прямой I (рис. 3). Тогда OF = d(0, I), d(0, I) > R.

Как доказать что многоугольник вписан в окружность

Для любой точки X прямой выполняется условие Как доказать что многоугольник вписан в окружность, следовательно, точка X не лежит на окружности. Таким образом, в случае Как доказать что многоугольник вписан в окружностьпрямая и окружность не имеют общих точек.

Касательная к окружности

Рассмотрим случай, когда прямая и окружность имеют единственную общую точку. Прямая, имеющая единственную общую точку с окружностью, имеет специальное название — касательная.

Определение. Касательной к окружности называется прямая, которая имеет с окружностью только одну общую точку.

Единственная общая точка прямой и окружности называется точкой касания прямой и окружности.

Если прямая I имеет единственную общую точку А с окружностью, то говорят, что прямая I касается окружности в точке А.

Теорема 1 (о свойстве касательной). Касательная к окружности перпендикулярна радиусу этой окружности, проведенному в точку касания.

1) Пусть прямая I касается окружности Как доказать что многоугольник вписан в окружностьДокажем, что Как доказать что многоугольник вписан в окружность

Как доказать что многоугольник вписан в окружность

2) Предположим, что это не так. Тогда радиус ОА является наклонной к прямой I. Перпендикуляр, проведенный из точки О к прямой I, меньше наклонной ОА, следовательно, расстояние от центра окружности до прямой

меньше радиуса. Значит, прямая и окружность имеют две общие точки, что противоречит условию. Таким образом, прямая I перпендикулярна радиусу ОА.

Рассмотрим следствия из данной теоремы.

Пусть через точку А проведены две прямые, касающиеся окружности Как доказать что многоугольник вписан в окружностьТогда отрезки АВ и АС называются отрезками касательных, проведенными из точки А (рис. 5).

Как доказать что многоугольник вписан в окружность

Следствие 1. Отрезки касательных к окружности, проведенные из одной точки, равны.

1) Пусть АВ и АС — отрезки касательных, проведенные из точки А (рис. 5). Для доказательства равенства АВ = АС рассмотрим треугольники АВО и АСО.

2) По свойству касательной Как доказать что многоугольник вписан в окружностьи Как доказать что многоугольник вписан в окружность, т. е. треугольники АВО и АСО — прямоугольные.

3)Как доказать что многоугольник вписан в окружность, так как АО — общая гипотенуза, а катеты О В и ОС равны как радиусы окружности. Отсюда следует, что АВ =АС.

Следствие 1 доказано.

Из равенства треугольников АВО и АСО вытекает также, что Как доказать что многоугольник вписан в окружность. Таким образом, получим еще одно следствие.

Следствие 2. Отрезки касательных к окружности, проведенные из одной точки, составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Теперь докажем признак, который позволяет устанавливать, в каком случае прямая касается окружности. Оказывается, для этого достаточно установить, что прямая перпендикулярна радиусу и проходит через его конец, лежащий на окружности.

Теорема 2 (признак касательной). Если прямая перпендикулярна радиусу окружности и проходит через его конец, лежащий на окружности, то она касается этой окружности.

1) Пусть прямая I проходит через точку А окружности и перпендикулярна радиусу О А (рис. 6). Для доказательства того, что прямая I касается окружности, достаточно доказать, что она имеет с этой окружностью единственную общую точку.

Как доказать что многоугольник вписан в окружность

2) Так как точка А лежит на окружности и прямая I проходит через точку А, то А — общая точка прямой I и окружности.

3) Других общих точек прямая I и окружность не имеют. Действительно, для любой точки Как доказать что многоугольник вписан в окружностьотрезок ОХ является наклонной, так как по условию Как доказать что многоугольник вписан в окружностьСледовательно, ОХ > ОА, т. е. точка X не принадлежит окружности.

Таким образом, точка А — единственная общая точка прямой I и окружности, а, значит, прямая I — касательная к окружности.

Пример №1

Через точку А, находящуюся от центра О окружности на расстоянии 10 см, проведены две касательные АВ и АС, где Б и С — точки касания. Вычислите площадь Как доказать что многоугольник вписан в окружностьчетырехугольника АВОС, если АВ + АС = = 16 см ( рис. 7).

Как доказать что многоугольник вписан в окружность

Решение:

1) Площадь четырехугольника АВОС равна сумме площадей треугольников АВО и АСО.

2) По свойству касательной Как доказать что многоугольник вписан в окружностьКак доказать что многоугольник вписан в окружность. Прямоугольные треугольники АВО и АСО равны по гипотенузе и катету (АО — общая, ОВ = ОС). Значит,

Как доказать что многоугольник вписан в окружность

3) Отрезки касательных к окружности, проведенные из одной точки, равны. Следовательно, АВ=АС = 8 см. Теперь, применив теорему Пифагора, вычислимКак доказать что многоугольник вписан в окружностьКак доказать что многоугольник вписан в окружность

Таким образом, Как доказать что многоугольник вписан в окружность

Ответ: Как доказать что многоугольник вписан в окружность

Пример №2

Точка F — середина основания ВС равнобедренного треугольника АБС. Докажите, что прямая ВС является касательной к окружности Как доказать что многоугольник вписан в окружность(рис. 8, а, б).

Как доказать что многоугольник вписан в окружностьКак доказать что многоугольник вписан в окружность

Доказательство.

1) Прямая ВС проходит через конец F радиуса окружности Как доказать что многоугольник вписан в окружность. Для доказательства того, что ВС является касательной, достаточно доказать, что Как доказать что многоугольник вписан в окружность

2) В равнобедренном треугольнике AВС отрезок AF — медиана, проведенная к его основанию. Следовательно, Как доказать что многоугольник вписан в окружностьТаким образом, по признаку касательной прямая ВС касается окружности Как доказать что многоугольник вписан в окружность

Что и требовалось доказать.

Пример №3

Точка А лежит вне окружности Как доказать что многоугольник вписан в окружностьПостройте прямую, которая касается окружности и проходит через точку А.

1) Пусть прямая I, проходящая через точку А и касающаяся окружности Как доказать что многоугольник вписан в окружность, построена. Точка В — точка касания. Тогда по свойству касательной OB LAB (рис. 9, а). Следовательно, для построения искомой касательной необходимо построить точку В на окружности Как доказать что многоугольник вписан в окружностьтак, что Как доказать что многоугольник вписан в окружность.

2) Рассмотрим окружность coj, диаметром которой является отрезок АО, т. е. Как доказать что многоугольник вписан в окружностьПусть В и С — точки пересечения окружностей Как доказать что многоугольник вписан в окружностьи Как доказать что многоугольник вписан в окружность(рис. 9, б). Заметим, что Как доказать что многоугольник вписан в окружность, как углы при основании равнобедренных треугольников ВО,О и ВО,А соответственно. Так как Как доказать что многоугольник вписан в окружность, то Как доказать что многоугольник вписан в окружностьЗначит, Как доказать что многоугольник вписан в окружность, т. е.Как доказать что многоугольник вписан в окружность. Аналогично доказывается, чтоКак доказать что многоугольник вписан в окружность. Отсюда по признаку

касательной к окружности следует, что прямые АВ и АС являются касательными. Теперь понятна последовательность необходимых построений.
Как доказать что многоугольник вписан в окружность

1) Проводим отрезок О А, соединяющий центр О данной окружности и точку А (рис. 10, а).

2) Строим середину Как доказать что многоугольник вписан в окружностьотрезка ОА: Как доказать что многоугольник вписан в окружностьТочки F и Е — точки пересечения окружностей Как доказать что многоугольник вписан в окружность

гдеКак доказать что многоугольник вписан в окружность(рис. 10, б).

Как доказать что многоугольник вписан в окружность

3) Строим окружность Как доказать что многоугольник вписан в окружность(рис. 10, в) и точки Б, С — точки пересечения данной и построенной окружностей.

4) Прямые АВ и АС — искомые касательные к данной окружности.

Доказательство. По построению Как доказать что многоугольник вписан в окружностьи Как доказать что многоугольник вписан в окружность(см. задачу № 251 учебного пособия «Геометрия, 7»), т. е. АВ1ОВ и АС 1ОВ. Следовательно, по признаку касательной АВ и АС — касательные.

Взаимное расположение двух окружностей

Рассмотрим вопрос о взаимном расположении двух окружностей в плоскости. Возможны следующие случаи взаимного расположения двух различных окружностей:

1) окружности не имеют общих точек (в этом случае говорят, что они не пересекаются (рис. 11, а ));

Как доказать что многоугольник вписан в окружность

2) окружности имеют две общие точки (в этом случае говорят, что окружности пересекаются (рис. 11, б));

3) окружности имеют только одну общую точку, и одна из окружностей лежит внутри круга, ограниченного другой окружностью (в этом случае говорят, что они касаются внутренним образом (рис. 12, а ));

4) окружности имеют только одну общую точку, и ни одна из окружностей не лежит внутри круга, ограниченного другой окружностью (в этом случае говорят, что они касаются внешним образом, (рис. 12, б)).

Как доказать что многоугольник вписан в окружность

Пример №4

Докажите, что если две окружности Как доказать что многоугольник вписан в окружностьи Как доказать что многоугольник вписан в окружностькасаются внешним образом, то расстояние между их центрами равно сумме их радиусов, т. е.Как доказать что многоугольник вписан в окружность

Как доказать что многоугольник вписан в окружность

Доказательство.

1) Пусть окружности Как доказать что многоугольник вписан в окружностькасаются внешним образом в точке А (рис. 13, а).

2) Докажем, что точка А лежит на отрезке Как доказать что многоугольник вписан в окружностьДопустим, что точка А не лежит на отрезке Как доказать что многоугольник вписан в окружностьЗаметим, что в случае внешнего касания точка А не может лежать на продолжении отрезка Как доказать что многоугольник вписан в окружностьПусть точка касания А не лежит на отрезке Как доказать что многоугольник вписан в окружность(рис. 13, б). Тогда Как доказать что многоугольник вписан в окружность

3) Пусть F — точка, симметричная точке А относительно прямой Как доказать что многоугольник вписан в окружность. Тогда Как доказать что многоугольник вписан в окружность, а значит, точка F принадлежит каждой окружности. Таким образом, окружности Как доказать что многоугольник вписан в окружностьимеют две общие точки А и F, что противоречит условию их касания. Следовательно, точка касания А лежит на отрезке Как доказать что многоугольник вписан в окружностьКак доказать что многоугольник вписан в окружностьКак доказать что многоугольник вписан в окружность

4) Докажем, что Как доказать что многоугольник вписан в окружностьТочка А лежит на отрезке Как доказать что многоугольник вписан в окружностьзначит, Как доказать что многоугольник вписан в окружность

Справедливо и обратное утверждение.

Пример №5

Докажите, если расстояние между центрами двух окружностей, лежащих в плоскости, равно сумме их радиусов, то такие окружности касаются внешним образом.

1) Пусть даны две окружности Как доказать что многоугольник вписан в окружностьи известно, что Как доказать что многоугольник вписан в окружностьДокажем, что окружности касаются внешним образом.

2) На отрезкеКак доказать что многоугольник вписан в окружностьрассмотрим точку А такую, что Как доказать что многоугольник вписан в окружностьТогда Как доказать что многоугольник вписан в окружность. Таким образом, точка А принадлежит каждой из данных окружностей.

3) Докажем, что окружности не имеют других общих точек. Действительно, на прямой Как доказать что многоугольник вписан в окружностьтаких точек нет. Предположим, что существует точка X вне прямой Как доказать что многоугольник вписан в окружностьпринадлежащая каждой окружности. Тогда Как доказать что многоугольник вписан в окружностьи Как доказать что многоугольник вписан в окружностьВ треугольнике Как доказать что многоугольник вписан в окружностьдлина стороныКак доказать что многоугольник вписан в окружностьравна сумме длин сторон Как доказать что многоугольник вписан в окружность, что невозможно.

4) Таким образом, предположение о существовании еще одной точки, принадлежащей окружностям Как доказать что многоугольник вписан в окружностьи Как доказать что многоугольник вписан в окружность, приводит к противоречию. Следовательно, других общих точек, кроме точки А, не существует, т. е. окружности касаются.

5) Докажем, что окружности касаются внешним образом. Для любой точки F окружностиКак доказать что многоугольник вписан в окружностьвыполняется условие Как доказать что многоугольник вписан в окружностьТаким образом, либо точка F лежит вне окружности Как доказать что многоугольник вписан в окружностькогда Как доказать что многоугольник вписан в окружность, либо эта точка принадлежит обеим окружностям, если Как доказать что многоугольник вписан в окружностьНо в этом случае точка F есть точка А касания окружностей. Следовательно, окружность Как доказать что многоугольник вписан в окружностьрасположена вне части плоскости, ограниченной окружностью Как доказать что многоугольник вписан в окружность. Аналогично можно доказать, что окружность Как доказать что многоугольник вписан в окружностьрасположена вне части плоскости, ограниченной окружностью Как доказать что многоугольник вписан в окружность. Теперь доказано, что окружности Как доказать что многоугольник вписан в окружностьи Как доказать что многоугольник вписан в окружностькасаются внешним образом.

Пример №6

Докажите, что две окружности касаются внутренним образом тогда и только тогда, когда расстояние между их центрами равно модулю разности их радиусов.

Другими словами, если окружности Как доказать что многоугольник вписан в окружностькасаются внутренним образом, то Как доказать что многоугольник вписан в окружностьИ наоборот, если выполняется равенство Как доказать что многоугольник вписан в окружность, то окружности касаются внутренним образом.

Пример №7

Две окружности с центрами в точках О и К, радиусы которых равны 16 см и 9 см соответственно, касаются внешним образом в точке С. К окружностям проведена общая касательная АВ, где точки А и В — точки касания.

Общая касательная, проведенная через точку С, пересекает касательную АВ в точке Т (рис. 14, а). Вычислите длину отрезка СТ.

Как доказать что многоугольник вписан в окружность

Решение:

Для решения задачи воспользуемся тем, что отрезки касательных, проведенные к окружности из одной точки, равны, а радиусы, проведенные в точку касания, перпендикулярны касательной. Учтем также, что окружности касаются внешним образом, а значит, расстояние между их центрами равно сумме их радиусов.

1) Так как отрезки касательных к окружности, проведенные из одной точки, равны, то ТС = ТА = ТВ, т. е. Как доказать что многоугольник вписан в окружность. Значит, нам необходимо вычислить длину отрезка АВ.

2) Так как окружности касаются внешним образом, то ОК = ОС + СК = 16 + 9 = 25 (см).

3) Рассмотрим четырехугольник ODBK. Пусть Как доказать что многоугольник вписан в окружностьи Как доказать что многоугольник вписан в окружность(рис. 14, б). Так как радиус, проведенный в точку касания, перпендикулярен касательной, тоКак доказать что многоугольник вписан в окружность, т. е. треугольник BAD — прямоугольный. Следовательно,

Как доказать что многоугольник вписан в окружность

4) Четырехугольник ODBK — параллелограмм, так как его противолежащие стороны параллельны, значит, DB = ОК = = 25 см. Кроме того, DA = ОА — OD = ОА — КВ =16-9 = 7 (см).

Тогда Как доказать что многоугольник вписан в окружностьСледовательно,Как доказать что многоугольник вписан в окружность

Ответ: ТС = 12 см.

Центральные и вписанные углы

В данном параграфе изучим понятия центрального и вписанного углов.

Определение. Центральным углом окружности называется угол с вершиной в центре этой окружности.

Как доказать что многоугольник вписан в окружность

Например, на рисунке 18, а изображен центральный угол TOF, который меньше развернутого угла, а на рисунке 18, б — центральный угол SOD — больше развернутого угла.

Любые две различные точки А и В окружности служат концами двух дуг. Для различия этих дуг на каждой из них отмечается некоторая промежуточная точка. Например, если на дугах отмечены точки F и Т, то в этом случае дуги обозначаются Как доказать что многоугольник вписан в окружностьи данная запись читается так: «дуга АТВ и дуга AFB» (рис. 19, а). Если понятно, о какой из двух дуг идет речь, употребляется также обозначение Как доказать что многоугольник вписан в окружность

Как доказать что многоугольник вписан в окружность

Дуга АВ окружности называется полуокружностью, если ее концы служат концами диаметра этой окружности.

Например, на рисунке 19, б изображены полуокружности ALB и АС В.

Пусть точки А и Б не являются концами диаметра окружности с центром в точке О. Тогда лучи ОА и ОБ служат сторонами двух центральных углов, один из которых меньше, а другой больше развернутого угла (рис. 20, а).
Как доказать что многоугольник вписан в окружность

Дуга АВ окружности Как доказать что многоугольник вписан в окружностьи центральный угол АОВ, внутри которого лежит эта дуга, называются соответствующими.

Если дуга окружности лежит внутри соответствующего ей центрального угла, который меньше развернутого угла, то говорят, что эта дуга меньше полуокружности.

Если дуга окружности лежит внутри соответствующего ей центрального угла, который больше развернутого угла, то говорят, что дуга больше полуокружности.

Например, на рисунке 20, а изображены дуга AFB, которая меньше полуокружности, и дуга АТВ — больше полуокружности.

Для сравнения дуг окружности вводится понятие градусной меры дуги окружности.

Дадим определение градусной меры дуги окружности.

Определение. Градусной мерой дуги окружности называется градусная мера соответствующего ей центрального угла.

Градусная мера дуги АВ, как и сама дуга, обозначается Как доказать что многоугольник вписан в окружность

Таким образом, если дуга АВ окружности меньше полуокружности, a Как доказать что многоугольник вписан в окружность— соответствующий ей центральный угол, то Как доказать что многоугольник вписан в окружность(см. рис. 20, а).

Если дуга АВ является полуокружностью, то ее градусная мера равна 180° (рис. 20, б).

Градусная мера дуги АТВ, которая больше полуокружности и дополняет дугу АВ, меньшую полуокружности, до окружности, равна 360° Как доказать что многоугольник вписан в окружность, где угол АОВ соответствует дуге АВ (рис. 20, в).

Понятие градусной меры дуги позволяет определить понятие равенства дуг окружности.

Две дуги одной и той же окружности называются равными, если равны их градусные меры.

Если градусная мера дуги АВ равна 33°, то пишут Как доказать что многоугольник вписан в окружность= 33°. Читают: «Градусная мера дуги АВ равна 33°», или кратко «Дуга АВ равна 33°».

Рассмотрим примеры. Пусть диагонали квадрата ABCD пересекаются в точке О. Окружность Как доказать что многоугольник вписан в окружностьпересекает стороны ВС и CD квадрата в точках F и L соответственно. Тогда Как доказать что многоугольник вписан в окружность, а градусная мера дуги FO, которая меньше полуокружности, равна 45°. Градусная мера дуги FLO, которая больше полуокружности, равна Как доказать что многоугольник вписан в окружность Как доказать что многоугольник вписан в окружность(рис. 21, а).

Рассмотрим еще один пример. Пусть точка О — центр окружности, отрезок АВ — хорда окружности, равная ее радиусу, а отрезок АС — диаметр окружности (рис. 21, б).
Как доказать что многоугольник вписан в окружность

Тогда градусная мера дуги АВ, которая меньше полуокружности, равна 60°, так как треугольник АОВ — равносторонний, а значит, градусная мера соответствующего ей центрального угла АОВ равна 60°. Градусная мера дуги ВС, которая меньше полуокружности, равна 120°, так как градусная мера соответствующего ей центрального угла ВОС равна 120°.

Можем вычислить градусную меру дуги ВАС, которая больше полуокружности: Как доказать что многоугольник вписан в окружность= 240°.

Вписанные углы. Рассмотрим понятие вписанного угла

Определение. Угол называется вписанным в окружность, если он меньше развернутого угла, вершина его лежит на окружности, а стороны пересекают эту окружность.

Например, на рисунке 22, а изображен вписанный угол TOF. Если точки А, В и С лежат на окружности, то каждый из угол ABC, ВСА, САВ является вписанным (рис. 22, б).

Как доказать что многоугольник вписан в окружность

Пусть Как доказать что многоугольник вписан в окружность— вписанный угол, при этом Г и В — точки пересечения его сторон с окружностью, a TF — дуга, которая лежит внутри этого вписанного угла. В этом случае говорят, что вписанный угол TOF опирается на дугу TF (см. рис. 22, а).

Например, на рисунке 22, в изображены вписанные углы ВАС, ВОС и BFC, которые опираются на одну и ту же дугу ВС.

Теперь докажем теорему о вписанном угле.

Теорема 1(о вписанном угле). Градусная мера вписанного угла равна половине градусной меры, дуги, на которую он опирается.

Пусть вписанный в окружностьКак доказать что многоугольник вписан в окружностьугол ABC опирается на дугу АС.

Докажем, что Как доказать что многоугольник вписан в окружностьРассмотрим три возможных случая. Центр О окружности лежит: 1) на одной из сторон угла; 2) во внутренней области угла; 3) во внешней области угла.

Первый случай. Центр О окружности лежит на одной из сторон угла ABC, например на стороне ВС (рис. 23).

Как доказать что многоугольник вписан в окружность

1) Дуга АС меньше полуокружности, следовательно, Как доказать что многоугольник вписан в окружность

2) Угол АОС — внешний угол равнобедренного треугольника АОВ, значит, Как доказать что многоугольник вписан в окружность

3) Так как углы при основании равнобедренного треугольника АОВ равны, то Как доказать что многоугольник вписан в окружность

4) Так как Как доказать что многоугольник вписан в окружность, тоКак доказать что многоугольник вписан в окружность

Второй случай. Центр О окружности лежит во внутренней области угла.

1) Пусть D — точка пересечения луча ВО и дуги АС (рис. 24). Тогда по доказанному в первом случае

Как доказать что многоугольник вписан в окружность

Как доказать что многоугольник вписан в окружностьКак доказать что многоугольник вписан в окружность

Таким образом, Как доказать что многоугольник вписан в окружность

Как доказать что многоугольник вписан в окружность

Третий случай. Центр О окружности лежит во внешней области угла ABC.

1) Пусть D — точка пересечения луча ВО с окружностью (рис. 25). Тогда согласно доказанному в первом случае
Как доказать что многоугольник вписан в окружностьКак доказать что многоугольник вписан в окружность

Таким образом, Как доказать что многоугольник вписан в окружность

Из данной теоремы получим следующие следствия.

Следствие 1. Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 26, а).

Следствие 2. Вписанный угол, опирающийся на полуокружность, прямой (рис. 26, б).

Как доказать что многоугольник вписан в окружность

Рассмотрим пример. Пусть хорда АВ соединяет концы дуги AFB и равна радиусу окружности со (О, R). Тогда градусная мера каждого из вписанных углов, опирающихся на дугу AFB, равна 30° (рис. 26, в). Действительно, градусная мера центрального угла АОВ равна 60°, значит, Как доказать что многоугольник вписан в окружность. Каждый из указанных углов опирается на дугу AFB, следовательно, градусная мера каждого из них равнаКак доказать что многоугольник вписан в окружность

Теорема 2 (об угле между хордой и касательной).

Градусная мера угла, сторонами которого служат касательная и хорда, равна половине градусной меры дуги, расположенной внутри этого угла.

Как доказать что многоугольник вписан в окружность

Доказательство.

Первый случай. Пусть угол FAB — острый (рис. 27, о.).

1) Проведем диаметр АС. Тогда вписанный угол СВ А опирается на полуокружность, значит, по следствию 2 он прямой, т. е. Как доказать что многоугольник вписан в окружность

2) Треугольник СВА — прямоугольный, следовательно, Как доказать что многоугольник вписан в окружность

3) Так как диаметр АС перпендикулярен касательной FA, то Как доказать что многоугольник вписан в окружностьТаким образом, Как доказать что многоугольник вписан в окружностьТак как вписанный угол АСВ опирается на дугу Как доказать что многоугольник вписан в окружность

Следовательно, Как доказать что многоугольник вписан в окружность

Второй случай. Пусть угол FAB — тупой (рис. 27, б). Проведем диаметр СА. Тогда

Как доказать что многоугольник вписан в окружность

но дуга ВСА лежит внутри тупого угла FAB.

Свойство пересекающихся хорд. Теорема о касательной и секущей

Теорема 3 (об отрезках пересекающихся хорд). Если две хорды окружности пересекаются, то произведение длин отрезков одной хорды равно произведению длин отрезков другой хорды.
Как доказать что многоугольник вписан в окружность

1) Проведем хорды АС и BD (рис. 28, б). Рассмотрим треугольники АОСи DOB.

2) Заметим, что Как доказать что многоугольник вписан в окружностьтак как они вписанные и опираются на одну и ту же дугу СВ. Кроме того, Как доказать что многоугольник вписан в окружность, так как они вписанные и опираются на одну и ту же дугу AD.

3) Треугольник АОС подобен треугольнику DOB по первому признаку подобия треугольников, так как Как доказать что многоугольник вписан в окружностьи Как доказать что многоугольник вписан в окружность

4) Из подобия треугольников АОС и DOB следует, что

Как доказать что многоугольник вписан в окружность

Значит, Как доказать что многоугольник вписан в окружность

Пусть через точку S, лежащую вне окружности, проведена секущая, которая пересекает окружность в точках С и Б, и SC

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

🎥 Видео

9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать

9 класс, 22 урок, Окружность, описанная около правильного многоугольника

111. Окружность, вписанная в правильный многоугольникСкачать

111. Окружность, вписанная в правильный многоугольник

Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

✓ Экстремальная задача про правильный вписанный многоугольник | Ботай со мной #078 | Борис ТрушинСкачать

✓ Экстремальная задача про правильный вписанный многоугольник | Ботай со мной #078 | Борис Трушин

Четырехугольники, вписанные в окружность. 9 класс.Скачать

Четырехугольники, вписанные в окружность. 9 класс.

110. Окружность, описанная около правильного многоугольникаСкачать

110. Окружность, описанная около правильного многоугольника

Окружность, вписанная в правильный многоугольник | Геометрия 7-9 класс #106 | ИнфоурокСкачать

Окружность, вписанная в правильный многоугольник | Геометрия 7-9 класс #106 | Инфоурок

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2Скачать

Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

ЕГЭ. Описывающая многоугольник окружность.Скачать

ЕГЭ. Описывающая многоугольник окружность.

9 класс. Правильный многоугольник, вписанный в окружность и описанный около окружностиСкачать

9 класс. Правильный многоугольник, вписанный в окружность и описанный около окружности

№1084. Сколько сторон имеет правильный вписанный многоугольник, если дуга описаннойСкачать

№1084. Сколько сторон имеет правильный вписанный многоугольник, если дуга описанной
Поделиться или сохранить к себе: