Как доказать что четырехугольник прямоугольник зная координаты

Как доказать что четырехугольник прямоугольник зная координаты

Решение:
Решение: Найдем длины сторон и длины диагоналей по формуле расстояния отрезка, по по заданным координатам его концов. d=корень ((x1-x2)^2+(y1-y2)^2+(z1-z2)^2) KM= корень ((0-1)^2+(-6-0)^2+(0-1)^2)=корень(38) MP= корень ((1-0)^2+(0-0)^2+(1-2)^2) )=корень(2) PT= корень ((0-(-1))^2+(0-(-6))^2+(2-1)^2)= корень(38) KT= корень ((0-(-1))^2+(-6-(-6))^2+(0-1)^2)==корень(2) KP= корень ((0-0)^2+(-6-0)^2+(0-2)^2)=корень(40) MT= корень ((1-(-1))^2+(0-(-6))^2+(1-1)^2) =корень(40) Если противоположные стороны четырехугольника равны, то он параллелограмм(признак параллелограмма) KM=PT,MP=KT, значит KMPT является паралелограмом Если диагонали параллелограмма равны, то он прямоугольник (признак прямоугольника) KP=МT, значит KMPT является прямоугольником. Доказано.

Видео:Прямоугольник. 8 класс.Скачать

Прямоугольник. 8 класс.

Даны координаты вершин четырехугольника ABCD: А (–6; 1), В (0; 5),
С (6; –4), D (0; –8). Докажите, что ABCD – прямоугольник, и найдите
координаты точки пересечения его диагоналей.

Как доказать что четырехугольник прямоугольник зная координаты

АС(6+6,-4-1) т.е. АС(12,-5) значит середина диагонали равна О(0,-1.5). вектор АВ (0+6,5-1) т.е. (6, 4), вектор ДС аналогично (6, 4). Координаты векторов равны, значит вектора равны АВ=ДС. Доказать что прямоугольник, воспользуемся теоремой Пифагора |ВД|^2=|АВ|^2+|АД|^2. Это выполниться, то четырехугольник прямоугольник.

Как доказать что четырехугольник прямоугольник зная координаты

Если ответ по предмету Геометрия отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.

Видео:№400. Докажите, что если в четырехугольнике все углы прямые, то четырехугольник — прямоугольник.Скачать

№400. Докажите, что если в четырехугольнике все углы прямые, то четырехугольник — прямоугольник.

Как доказать, что четырехугольник является параллелограммом?

Согласно определению,геометрическая фигура параллелограмм является четырехугольником с попарно параллельными противоположными сторонами и равными противолежащими углами. Доказать, что фигура параллелограмм позволяет как определение, так и ее признаки. Применяя на практике эти свойства, можно решать геометрические задачи разной сложности.

Как доказать что четырехугольник прямоугольник зная координаты

Видео:№951. Докажите, что четырехугольник ABCD является прямоугольником, и найдите егоСкачать

№951. Докажите, что четырехугольник ABCD является прямоугольником, и найдите его

Определение параллелограмма

Четырехугольник является параллелограммом с параллельными противоположными сторонами. Эта фигура имеет по 2 тупых и острых угла, произвольную величину которых определяют при решении задач. Для этого используют не только признаки параллелограмма или треугольника, но и таблицу синусов с косинусами.

Как доказать что четырехугольник прямоугольник зная координаты

Квадрат, прямоугольник и ромб — это параллелограммы, обладающие общими свойствами. Фигура, у которой диагонали совпадают с биссектрисами, является ромбом. Согласно определению, прямоугольник — это четырехугольник, имеющий все прямые углы. Если стороны этой фигуры равны между собой, то прямоугольник является квадратом.

Параллелограмм — геометрическая фигура с равными противоположными сторонами. Если каждую из них возвести в квадрат и сложить их между собой, то полученная величина будет равна сумме квадратов диагоналей, проведенных через противоположные вершины углов фигуры. Диагонали этого четырехугольника пересекаются в точке, определить которую позволяют прямоугольные координаты.

Видео:№933. Найдите координаты вершины D параллелограмма ABCD, если А (0; 0), B (5; 0), С (12; -3.).Скачать

№933. Найдите координаты вершины D параллелограмма ABCD, если А (0; 0), B (5; 0), С (12; -3.).

Свойства фигуры

Зная различные свойства четырехугольников, можно решать простые и сложные задачи по геометрии, начиная с определения периметра, заканчивая нахождением координаты вершины параллелограмма. Для решения задач используют 7 основных свойств параллелограмма, учитывая что его стороны попарно образуют:

  • смежные углы, сумма которых составляет 180 градусов;
  • равные отрезки;
  • одинаковые по величине противоположные углы;
  • четырехугольник, сумма углов которого равна 360 градусов;
  • фигуру, диагонали которой пересекаются в точке, разделяющей их на 2 равных отрезка;
  • равнобедренный треугольник, одна из сторон которого является биссектрисой фигуры;
  • симметричные фигуры, дополняемые линией, проходящей через точку пересечения диагоналей.

Как доказать что четырехугольник прямоугольник зная координаты

Доказать последнее свойство позволяет II признак равенства треугольников. Известен отрезок, принадлежащий линии, проведенной через точку, в которой пересекаются диагонали. В четырехугольнике КМРТ он обозначен НП. Отсюда следует равенство треугольников КОП и НОР, поэтому НО=ОП.

Сумма смежных углов параллелограмма составляет 180 градусов, поскольку они являются односторонними при параллельных прямых. Существует свойство равенства острого угла и образованного высотами тупого угла четырехугольника АВСД. Параллелограмм имеет смежные углы А и Д, а высоты ВМ и ВН проведены из вершины В, поэтому угол МВН в сумме с Д равен 180 градусам.

Доказательство равенства противолежащих сторон и углов фигуры заключается в следующем. Например, диагонали ABCD делят фигуру на 2 равных треугольника, имеющих общую сторону в виде диагонали BD. При этом углы ADВ и ABC при противолежащих вершинах A и C являются накрест лежащими.

Параллелограмм состоит из равных треугольников ABD, BCD и ABC, ACD, образуемых диагоналями AC и ВD, значит AB=CD и AD=BC. Отсюда углы при вершинах A и C, В и D имеют одинаковую величину.

Свойства можно представить в виде формул для решения уравнений и примеров, а также доказать теоретически. Их следует запомнить, чтобы правильно применять на практике. Для решения более сложных задач по геометрии следует доказать основные свойства фигуры.

Видео:Геометрия 8. Урок 4 - Прямоугольник, ромб, квадрат - свойства и признаки.Скачать

Геометрия 8. Урок 4 - Прямоугольник, ромб, квадрат - свойства и признаки.

Основные признаки

Существует 5 признаков параллелограмма, доказательство которых основано на свойствах прямых и образованных ими углов либо фигур. Выпуклый четырехугольник, вершины которого обозначены МНКП, имеет диагонали МП и НК. Признаки того, что фигура МНКП представляет собой параллелограмм, следующие:

  • попарное равенство противоположных сторон: МН=КП и НК=МП;
  • попарное равенство противоположных углов: МНК=КПМ и НКП=НМП;
  • равенство и параллельность противоположных сторон: МН=КП и МН||КП;
  • пересечение диагоналей в точке, которая делит их пополам;
  • МН2 + КП2 = МН2 + НК2 + КП2 + МП2

Как доказать что четырехугольник прямоугольник зная координаты

Если четырехугольник имеет 2 равные и параллельные стороны, то он представляет собой параллелограмм. Четырехугольник MNPK имеет параллельные и равные MN и KP, отсюда следует доказательство I признака:

  • Если провести диагональ MP, то она образует треугольники MNP и MPK.
  • Фигуры имеют общую сторону MP, а MN=KP по условию.
  • Поскольку прямая MP пересекает параллельные прямые MN и PK, то образуемые этими прямыми накрест лежащие углы равны.
  • Параллельность других сторон MK и NP при диагонали MP основана на равенстве накрест лежащих углов, поэтому четырехугольник MNPK — параллелограмм.

    Если четырехугольник имеет противоположные стороны, которые равны попарно, то он является параллелограммом. Перед тем как доказать, что фигура является параллелограммом, следует провести диагонали. Пошаговое доказательство II признака:

    Как доказать что четырехугольник прямоугольник зная координаты

    Доказать деление точкой пересечения каждой из диагоналей фигуры АМКД на равные отрезки позволяет II признак равенства треугольников. При этом AОД и КОМ равны. Следовательно, AО=КО и АО=ДО.

    Согласно III признаку, четырехугольник, диагонали которого пересекаются, а точка пересечения делит их пополам, представляет собой параллелограмм. В четырехугольнике MNPQ она обозначена буквой К. Поскольку в ней пересекаются диагонали MP и NQ, то образуемые ими треугольники MNК и КPQ равны по I признаку. Это следует из равенства вертикальных углов MКN и PКQ, а также MК и NК, КP и КQ, которые равны по условию.

    В треугольниках MNК и КPQ стороны MN и PQ равны между собой. Углы NMК и КPQ равны как накрест лежащие при MN и PQ и секущей MP. Отсюда следует, что прямые MN||PQ. Итак, четырехугольник MNPQ — это параллелограмм по I признаку, поскольку MN и PQ равны и параллельны.

    Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

    Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

    Пошаговое доказательство

    Перед тем как доказать, что четырехугольник параллелограмм, нужно провести высоты треугольников МНК и МПК, пересекающие МК в точках О и С. По данным задачи, МНК, МПК и НПК имеют одинаковые площади. Доказательство параллельности МК и НП состоит из следующих шагов:

    Как доказать что четырехугольник прямоугольник зная координаты

  • Равенство высот НО и ПС следует из соответствия площадей треугольников МНК и МПК, у которых имеется общая сторона МК.
  • Прямые, содержащие высоты НО и ПС, пересекают прямую МК под углом 90 градусов.
  • Точки пересечения лежат на одной и той же стороне относительно МК.
  • Отсюда следует, что МК и НП — параллельны.

    Чтобы доказать, что МН и ПК параллельны, нужно опустить из вершин треугольников МНК и НКП высоты Н и П, которые пересекут прямую ПК в точках Р и Т. По построению НР=ПТ, а по указанному условию площади треугольников МНК и НПК совпадают. Сторона МН параллельна ПК, следовательно, МНПК — параллелограмм. Итак, порядок доказательства параллельности МН и ПК аналогичен с доказательством, что МК и НП параллельны.

    Доказательство признака образования равнобедренного треугольника и трапеции при пересечении противолежащей стороны параллелограмма биссектрисой АМ одного из углов состоит из следующих утверждений:

    Зная, как доказать, что фигура параллелограмм, если известно, что 2 из его сторон равны и параллельны, можно использовать I признак равенства для доказательства другого. Согласно II признаку, стороны параллелограмма попарно равны между собой.

    🎬 Видео

    8 класс, 7 урок, ПрямоугольникСкачать

    8 класс, 7 урок, Прямоугольник

    8 класс, 3 урок, ЧетырехугольникСкачать

    8 класс, 3 урок, Четырехугольник

    8 класс, 4 урок, ПараллелограммСкачать

    8 класс, 4 урок, Параллелограмм

    №371. Докажите, что выпуклый четырехугольник ABCD является параллелограммом,Скачать

    №371. Докажите, что выпуклый четырехугольник ABCD является параллелограммом,

    Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать

    Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!

    Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 классСкачать

    Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 класс

    Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

    Реакция на результаты ЕГЭ 2022 по русскому языку

    ГЕОМЕТРИЯ ОГЭ задание 18 найти площадь четырехугольника с заданными координатами вершинСкачать

    ГЕОМЕТРИЯ ОГЭ задание 18 найти площадь четырехугольника с заданными координатами вершин

    8 класс, 2 урок, Выпуклый многоугольникСкачать

    8 класс, 2 урок, Выпуклый многоугольник

    Координаты точки и координаты вектора 1.Скачать

    Координаты точки и координаты вектора 1.

    Четырехугольники. Вебинар | МатематикаСкачать

    Четырехугольники. Вебинар | Математика

    Координаты вектора. 9 класс.Скачать

    Координаты вектора. 9 класс.

    ПРЯМОУГОЛЬНИК. §4 геометрия 8 классСкачать

    ПРЯМОУГОЛЬНИК. §4 геометрия 8 класс

    Параллельные прямые | Математика | TutorOnlineСкачать

    Параллельные прямые | Математика | TutorOnline
  • Поделиться или сохранить к себе: