Видео:№84. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью, проходящейСкачать

Ваш ответ
Видео:№114. Изобразите параллелепипед ABCDA1B1C1D1 и отметьте на ребре АВ точку М. Постройте сечение паралСкачать

решение вопроса
Видео:№330. Нарисуйте параллелепипед ABCDA1B1C1D1 и обозначьте векторы C1D1, BA1Скачать

Похожие вопросы
- Все категории
- экономические 43,282
- гуманитарные 33,619
- юридические 17,900
- школьный раздел 606,989
- разное 16,829
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Видео:№80. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечения плоскостями АВС1Скачать

Изобразите параллелепипед abcda1b1c1d1 и обозначьте векторы c1d1 ba1 ad
Вопрос по геометрии:
1) упростите выражение B1D1+C1C+C1B+AC1+CA+A1D1
2) изобразите тетраэдр ABCD и вектор, равный BC+CD-BA
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!
Ответы и объяснения 1
Этим вектором будет АД
Знаете ответ? Поделитесь им!
Как написать хороший ответ?
Чтобы добавить хороший ответ необходимо:
- Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
- Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
- Писать без грамматических, орфографических и пунктуационных ошибок.
Этого делать не стоит:
- Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
- Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
- Использовать мат — это неуважительно по отношению к пользователям;
- Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.
Видео:№81. Изобразите параллелепипед ABCDA1B1C1D1 и отметьте точки М и N соответственноСкачать

Урок геометрии по теме «Перпендикулярность прямой и плоскости». 10-й класс
Разделы: Математика
Класс: 10
Цели:
- закрепить вопросы теории по теме «Перпендикулярность прямой и плоскости»;
- вырабатывать навыки применения теоретических знаний к решению типовых задач на перпендикулярность прямой и плоскости.
План:
- Теоретический опрос.- Доказательство изученных теорем у доски.
- Фронтальный опрос.
- Презентации учащихся по данной теме.
 
- Решение задач.- Решение устных задач по готовым чертежам.
- Решение письменных задач (по группам).
- Самостоятельная работа с индивидуальным заданием.
 
- Итог урока. Задание на дом.
Ход урока
I. Теоретический опрос (4 ученика у доски)
1) доказать лемму о 2-ух параллельных прямых, одна из которых перпендикулярна к третьей; 
2) доказать теорему о 2-ух параллельных прямых, одна из которых перпендикулярна к плоскости; 
3) доказать обратную теорему о параллельности 2-ух прямых, перпендикулярных к плоскости; 
4) доказать признак перпендикулярности прямой и плоскости.
Пока ученики готовятся у доски к ответу, с классом проводится фронтальный опрос. 
(С помощью мультимедиапроектора на экране появляются вопросы (Приложение 1), и ученики отвечают на них)
1. Закончить предложение:
а) две прямые в пространстве называются перпендикулярными, если… (угол между ними равен 90°) 
б) прямая называется перпендикулярной к плоскости, если… (она перпендикулярна к любой прямой, лежащей в этой плоскости) 
в) если две прямые перпендикулярны к плоскости, то они… (параллельны) 
г) если плоскость перпендикулярна к одной из двух параллельных прямых, то она… (перпендикулярна и к другой прямой) 
д) если две плоскости перпендикулярны к одной прямой, то они… (параллельны)
2. Дан параллелепипед
б) Определите взаимное расположение: 
1) прямой CC1 и плоскости (DСВ) (ответ: они перпендикулярны) 
2) прямой D1C1 и плоскости (DCB) (ответ: они параллельны)
Далее выслушиваются ответы учеников у доски с дополнениями и исправлениями по необходимости. Затем рассматриваются презентации по данной теме, подготовленные рядом учеников в качестве зачётных работ (Приложение 2, Приложение 3, Приложение 4). 
(Накануне изучения каждой темы учащимся предлагается такой вариант зачёта)
II. Решение задач.
1. Решение задач по готовым чертежам (Устно)
№1
Дано: ∆ ABC — прямоугольный; AM ⊥ AC; M ∉ (ABC) 
Доказать: AC ⊥ (AMB) 
Доказательство: Т.к. AC ⊥ AB и AC ⊥ AM, а AM ⋂ AB, т.е. АМ и АВ лежат в плоскости (АМВ), то AC ⊥ (AMB) по признаку перпендикулярности прямой и плоскости. 
Ч.т.д.
№2
Дано: ВМDC — прямоугольник, M ∉ (ABC), MB ⊥ AB 
Доказать: CD ⊥ (ABC) 
Доказательство: MB ⊥ BC, т.к. ВМDC – прямоугольник, MB ⊥ AB по условию, BC ⋂ AB, т.е. ВС и АВ лежат в плоскости (АВС) ⇒ MB ⊥ (ABC) по признаку перпендикулярности прямой и плоскости. СD ∥ МВ по свойству сторон прямоугольника ⇒ CD ⊥ (ABC) по теореме о двух параллельных прямых, одна из которых перпендикулярна к плоскости (то и другая прямая перпендикулярна к этой плоскости). 
Ч.т.д.
№3
Дано: АВСD – прямоугольник, M ∉ (ABC), MB ⊥ BC 
Доказать: AD ⊥ AM 
Доказательство: 
1) ∠ABC = 90°, т.к. АВСD – прямоугольник ⇒ BC ⊥ AB, BS ⊥ MB по условию, MB ⋂ AB = B, т.е. МВ и АВ лежат в плоскости (АМВ) ⇒ BC ⊥ (AMB) по признаку перпендикулярности прямой и плоскости. 
2) BC ∥ AD (по свойству сторон прямоугольника) ⇒ AD ⊥ (AMB) по теореме о двух параллельных прямых, одна из которых перпендикулярна плоскости (то и другая прямая перпендикулярна к этой плоскости). 
3) Т.к. AD ⊥ (AMB) ⇒ AD ⊥ AM по определению прямой, перпендикулярной плоскости.
Ч.т.д.
№4
Дано: АВСD – параллелограмм, M ∉ (ABC), МВ = МD, МА = МС 
Доказать: MO ⊥ (ABC) 
Доказательство: 
1) Т.к. О – точка пересечения диагоналей параллелограмма, то АО = СО и ВО = DO. ∆ BMD — равнобедренный, т. к. ВМ = МD по условию, значит МО — медиана и высота, т.е. MO ⊥ BD. 
2) Аналогично доказывается в ∆ AMC: MO ⊥ AC. 
3) Итак, MO ⊥ BD и MO ⊥ AC. а ВD и АС – пересекающиеся прямые, лежащие в плоскости (АВС) ⇒ MO ⊥ (ABC) по признаку перпендикулярности прямой и плоскости. 
Ч.т.д.
(Устные ответы к каждой задаче требуется обосновывать, проговаривая всякий раз формулировки применяемых теорем)
2. Решение письменных задач
Класс делится на три группы (например, по рядам), и каждой группе даётся задача с последующей проверкой решения у доски.
№1.2 (№125 учебника)
Через точки P и Q прямой РQ проведены прямые, перпендикулярные к плоскости α и пересекающие её соответственно в точках P1 и Q1. Найдите P1Q1, если PQ = 15 cм; PP1 = 21,5 cм; QQ1 = 33,5 cм. 
Решение:
1) PP1 ⊥ α и QQ1 ⊥ α по условию ⇒ PP1 ∥ QQ1 (обосновать); 
2) PP1 и QQ1 определяют некоторую плоскость β, α ⋂ β = P1Q1; 
3) PP1Q1Q — трапеция с основаниями PP1 и QQ1, проведём PK ∥ P1Q1; 
4) QK = 33,5 — 21,5 = 12 (см)
| P1Q1 = PK = |  | = 9 см. | 
№2.2
1) ∆ ABD: ∠BAD = 90°; АD = BC = 8 см;
| ВD = |  | см; | 
2) ∆ DD1B: ∠D1DB = 90°;
| DD1 = |  | = 12 см; | 
| 3) SBB1D1D = BD ∙ DD1 = |  | см 2 . | 
| Ответ: |  | см 2 . | 
№3.2
Отрезок МН пересекает плоскость α в точке К. Из концов отрезка проведены прямые МЕ и НР, перпендикулярные к плоскости α. НР = 4 см; МЕ = 12 см; НК = 5 см. Найдите отрезок РЕ. 
Решение:
1) Т.к. прямые МЕ и НР перпендикулярны к плоскости α, то МЕ ∥ НР (обосновать) и через них проходит некоторая плоскость β. α ⋂ β = EP; 
2)МЕ ⊥ EP; НР ⊥ EP(обосновать), т.е. ∠MEK = ∠HPK = 90°;
| 3) ∆ HPK: KP = |  | = 3 см; | 
4) ∠EMK = ∠PHK (накрест лежащие для параллельных прямых МЕ и НР и секущей МН),
| тогда ∆ MEK ∆ HPK по двум углам и |  | ; т.е. |  | ⇒ EK = |  | = 9 см, | 
РЕ = РК + КЕ, РЕ = 3 + 9 = 12 см.
Ответ: РЕ = 12 см.
3. Самостоятельная работа (направлена на проверку усвоения материала по данной теме)
| Вариант I | Вариант II | |||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Через вершины А и В прямоугольника АВСD проведены параллельные прямые AA1 и BB1, не лежащие в плоскости прямоугольника. Известно, что AA1 ⊥ AB, AA1 ⊥ AD. Найдите B1B, если B1D = 25 см, AB = 12 см, AD = 16 см. | Через вершины А и В ромба АВСD проведены параллельные прямые AA1 и BB1, не лежащие в плоскости ромба. Известно, что BB1 ⊥ BC, BB1 ⊥ AB. Найдите A1A, если A1C = 13 см, BD = 16 см, AB = 10 см. | |||||||||||||||||||||||
| BD = |  | = 20 см; | 
3) ∆ B1BD – прямоугольный. По теореме Пифагора:
| B1B = |  | = 15 см. | 
1) BB1 ⊥ AB, BB1 ⊥ BC, а AB ⋂ BC = B ⇒ BB1 ⋂ (ABC) (по признаку перпендикулярности прямой и плоскости), а т.к. BB1 ∥ AA1, то AA1 ⊥ (ABC) ⇒ AA1 ⊥ AC; 
2) Используя свойство диагоналей ромба, имеем в ∆ AOB: ∠AOB = 90°, BO = ½ BD = 8 см. По теореме Пифагора:
| AO = |  | = 6 см, | 
 AO = ½ AC ⇒ AC = 12 см;
3) ∆ A1AC – прямоугольный. По теореме Пифагора:
| AA1 = |  | = 5 см. | 
Индивидуальное задание для более сильных учеников. (Вариант III)
1) Т.к. CD ⊥ (FDC) ⇒ CD ⊥ AC и CD ⊥ BC, т.е. ∆ ADC, ∆ BDC – прямоугольные; 
2) ∆ ADC = ∆ BDC (по двум катетам) ⇒ AD = BD, т.е. ∆ ADB – равнобедренный и DM – медиана, а значит и высота; 3) DC ⊥ MC ⇒ MCD – прямоугольный,
| тогда MC = |  | = 9; | 
4) ∆ ABC – равносторонний, поэтому СМ – медиана и высота, т.е. ∆ MCB – прямоугольный, ∠B = 60°,
| sin ∠B = |  | , тогда |  | , | 
 а АВ = ВС (по условию). 
5) S∆ ADB = ½ DM ∙ AB;
| S∆ ADB = ½ ∙ 15 ∙ |  | . | 
| Ответ: |  | 
III. Подводятся итоги урока. Задание на дом: повторить теоретический материал по изученной теме, глава II, №130, №131.
Для подготовки к уроку использовались материалы учебника «Геометрия – 10-11» авторов Л.С. Атанасяна, В.Ф. Бутузова и др., методические рекомендации к учебнику «Изучение геометрии в 10-11 классах» авторов С.М. Саакяна, В.Ф. Бутузова, «Поурочные разработки по геометрии» автора В.А. Яровенко.
🎬 Видео
№82. Изобразите параллелепипед ABCDA1B1C1D1 и отметьте внутреннюю точку М грани АА1В1ВСкачать

№79. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение: а) плоскостью АВС1;Скачать

№83. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью, проходящей черезСкачать

№86. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью, проходящейСкачать

№359. Дан параллелепипед ABCDA1B1C1D1. а) Разложите вектор BD1 по векторам ВА, ВС и ВВ1.Скачать

№358. Дан параллелепипед ABCDA1B1C1D1. Назовите вектор, начало и конец которого являются вершинамиСкачать

№85. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью BKL, где КСкачать

№87. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью MNK, где точки М,Скачать

№78. На рисунке 42 изображен параллелепипед ABCDA1B1C1D1, на ребрах которого отмечены точки МСкачать

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

№76. Дан параллелепипед ABCDA1B1C1D1. Докажите, что AC||A1C1 и BD||B1D1.Скачать

№339. Дан параллелепипед ABCDAСкачать

№327. На рисунке 97 изображен параллелепипед ABCDA1B1C1D1. Назовите вектор, нСкачать

№355. Дан параллелепипед ABCDA1B1C1D1. Какие из следующих трех векторов компланарныСкачать

10 класс, 44 урок, Правило параллелепипедаСкачать












