Формула для нахождения длины отрезка в окружности

Площадь круга и его частей. Длина окружности и ее дуг
Формула для нахождения длины отрезка в окружностиОсновные определения и свойства. Число π
Формула для нахождения длины отрезка в окружностиФормулы для площади круга и его частей
Формула для нахождения длины отрезка в окружностиФормулы для длины окружности и ее дуг
Формула для нахождения длины отрезка в окружностиПлощадь круга
Формула для нахождения длины отрезка в окружностиДлина окружности
Формула для нахождения длины отрезка в окружностиДлина дуги
Формула для нахождения длины отрезка в окружностиПлощадь сектора
Формула для нахождения длины отрезка в окружностиПлощадь сегмента

Формула для нахождения длины отрезка в окружности

Содержание
  1. Основные определения и свойства
  2. Формулы для площади круга и его частей
  3. Формулы для длины окружности и её дуг
  4. Площадь круга
  5. Длина окружности
  6. Длина дуги
  7. Площадь сектора
  8. Площадь сегмента
  9. Геометрия. Урок 5. Окружность
  10. Определение окружности
  11. Отрезки в окружности
  12. Дуга в окружности
  13. Углы в окружности
  14. Длина окружности, длина дуги
  15. Площадь круга и его частей
  16. Теорема синусов
  17. Примеры решений заданий из ОГЭ
  18. Длина окружности
  19. Как найти длину окружности через диаметр
  20. Как найти длину окружности через радиус
  21. Как вычислить длину окружности через площадь круга
  22. Как найти длину окружности через диагональ вписанного прямоугольника
  23. Как вычислить длину окружности через сторону описанного квадрата
  24. Как найти длину окружности через стороны и площадь вписанного треугольника
  25. Как найти длину окружности через площадь и полупериметр описанного треугольника
  26. Как вычислить длину окружности через сторону вписанного правильного многоугольника
  27. Задачи для решения

Видео:Если ты в 8 классе, посмотри ЭТО ВИДЕО — Формула Длины ОтрезкаСкачать

Если ты в 8 классе, посмотри ЭТО ВИДЕО — Формула Длины Отрезка

Основные определения и свойства

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Часть окружности, расположенная между двумя точками окружности

Конечная часть плоскости, ограниченная окружностью

Часть круга, ограниченная двумя радиусами

Часть круга, ограниченная хордой

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

ФигураРисунокОпределения и свойства
ОкружностьФормула для нахождения длины отрезка в окружности
ДугаФормула для нахождения длины отрезка в окружности
КругФормула для нахождения длины отрезка в окружности
СекторФормула для нахождения длины отрезка в окружности
СегментФормула для нахождения длины отрезка в окружности
Правильный многоугольникФормула для нахождения длины отрезка в окружности
Формула для нахождения длины отрезка в окружности
Окружность
Формула для нахождения длины отрезка в окружности

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

ДугаФормула для нахождения длины отрезка в окружности

Часть окружности, расположенная между двумя точками окружности

КругФормула для нахождения длины отрезка в окружности

Конечная часть плоскости, ограниченная окружностью

СекторФормула для нахождения длины отрезка в окружности

Часть круга, ограниченная двумя радиусами

СегментФормула для нахождения длины отрезка в окружности

Часть круга, ограниченная хордой

Правильный многоугольникФормула для нахождения длины отрезка в окружности

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Формула для нахождения длины отрезка в окружности

Около любого правильного многоугольника можно описать окружность

Определение 1 . Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Определение 2 . Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Замечание 1 . Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.

Определение 3 . Числом π (пи) называют число, равное площади круга радиуса 1.

Замечание 2 . Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:

Формула для нахождения длины отрезка в окружности

Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.

Видео:Длина отрезкаСкачать

Длина отрезка

Формулы для площади круга и его частей

Формула для нахождения длины отрезка в окружности,

где R – радиус круга, D – диаметр круга

Формула для нахождения длины отрезка в окружности,

если величина угла α выражена в радианах

Формула для нахождения длины отрезка в окружности,

если величина угла α выражена в градусах

Формула для нахождения длины отрезка в окружности,

если величина угла α выражена в радианах

Формула для нахождения длины отрезка в окружности,

если величина угла α выражена в градусах

Числовая характеристикаРисунокФормула
Площадь кругаФормула для нахождения длины отрезка в окружности
Площадь сектораФормула для нахождения длины отрезка в окружности
Площадь сегментаФормула для нахождения длины отрезка в окружности
Площадь круга
Формула для нахождения длины отрезка в окружности

Формула для нахождения длины отрезка в окружности,

где R – радиус круга, D – диаметр круга

Площадь сектораФормула для нахождения длины отрезка в окружности

Формула для нахождения длины отрезка в окружности,

если величина угла α выражена в радианах

Формула для нахождения длины отрезка в окружности,

если величина угла α выражена в градусах

Площадь сегментаФормула для нахождения длины отрезка в окружности

Формула для нахождения длины отрезка в окружности,

если величина угла α выражена в радианах

Формула для нахождения длины отрезка в окружности,

если величина угла α выражена в градусах

Видео:Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Формулы для длины окружности и её дуг

где R – радиус круга, D – диаметр круга

если величина угла α выражена в радианах

Формула для нахождения длины отрезка в окружности,

если величина угла α выражена в градусах

Числовая характеристикаРисунокФормула
Длина окружностиФормула для нахождения длины отрезка в окружности
Длина дугиФормула для нахождения длины отрезка в окружности
Длина окружности
Формула для нахождения длины отрезка в окружности

где R – радиус круга, D – диаметр круга

Длина дугиФормула для нахождения длины отрезка в окружности

если величина угла α выражена в радианах

Формула для нахождения длины отрезка в окружности,

если величина угла α выражена в градусах

Видео:Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Площадь круга

Рассмотрим две окружности с общим центром ( концентрические окружности ) и радиусами радиусами 1 и R , в каждую из которых вписан правильный n – угольник (рис. 1).

Обозначим через O общий центр этих окружностей. Пусть внутренняя окружность имеет радиус 1 .

Формула для нахождения длины отрезка в окружности

Формула для нахождения длины отрезка в окружности

Формула для нахождения длины отрезка в окружности

Формула для нахождения длины отрезка в окружности

Формула для нахождения длины отрезка в окружности

Формула для нахождения длины отрезка в окружности

Поскольку при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса 1 , стремится к π , то при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса R , стремится к числу πR 2 .

Таким образом, площадь круга радиуса R , обозначаемая S , равна

Видео:Нахождение длины отрезка по координатамСкачать

Нахождение длины отрезка по координатам

Длина окружности

Формула для нахождения длины отрезка в окружности

Формула для нахождения длины отрезка в окружности

Формула для нахождения длины отрезка в окружности

то, обозначая длину окружности радиуса R буквой C , мы, в соответствии с определением 2, при увеличении n получаем равенство:

Формула для нахождения длины отрезка в окружности

откуда вытекает формула для длины окружности радиуса R :

Следствие . Длина окружности радиуса 1 равна 2π.

Видео:Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

Длина дуги

Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.

Формула для нахождения длины отрезка в окружности

В случае, когда величина α выражена в градусах, справедлива пропорция

Формула для нахождения длины отрезка в окружности

из которой вытекает равенство:

Формула для нахождения длины отрезка в окружности

В случае, когда величина α выражена в радианах, справедлива пропорция

Формула для нахождения длины отрезка в окружности

из которой вытекает равенство:

Формула для нахождения длины отрезка в окружности

Видео:Длина окружности. Площадь круга - математика 6 классСкачать

Длина окружности. Площадь круга - математика 6 класс

Площадь сектора

Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.

Формула для нахождения длины отрезка в окружности

В случае, когда величина α выражена в градусах, справедлива пропорция

Формула для нахождения длины отрезка в окружности

из которой вытекает равенство:

Формула для нахождения длины отрезка в окружности

В случае, когда величина α выражена в радианах, справедлива пропорция

Формула для нахождения длины отрезка в окружности

из которой вытекает равенство:

Формула для нахождения длины отрезка в окружности

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Площадь сегмента

Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.

Формула для нахождения длины отрезка в окружности

Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах, получаем

Формула для нахождения длины отрезка в окружности

Формула для нахождения длины отрезка в окружности

Формула для нахождения длины отрезка в окружности

В случае, когда величина α выражена в в радианах, получаем

Видео:7 класс, 7 урок, Длина отрезкаСкачать

7 класс, 7 урок, Длина отрезка

Геометрия. Урок 5. Окружность

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Формула для нахождения длины отрезка в окружности

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение окружности
  • Отрезки в окружности

Видео:Координаты середины отрезкаСкачать

Координаты середины отрезка

Определение окружности

Окружность – геометрическое место точек, равноудаленных от данной точки.

Эта точка называется центром окружности .

Формула для нахождения длины отрезка в окружности

Видео:Длина дуги окружности. 9 класс.Скачать

Длина дуги окружности. 9 класс.

Отрезки в окружности

Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

Хорда a – отрезок, соединяющий две точки на окружности.

Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

O A – радиус, D E – хорда, B C – диаметр.

Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.

Видео:Определение длины отрезкаСкачать

Определение длины отрезка

Дуга в окружности

Часть окружности, заключенная между двумя точками, называется дугой окружности .

Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

Теорема 4:
Равные хорды стягивают равные дуги.

Если A B = C D , то ∪ A B = ∪ C D

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Углы в окружности

В окружности существует два типа углов: центральные и вписанные.

Центральный угол – угол, вершина которого лежит в центре окружности.

∠ A O B – центральный.

Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α

Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

Градусная мара всей окружности равна 360 ° .

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

∠ A C B – вписанный.

Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .

∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

Видео:Тема 12. Формула длины отрезка с заданными координатами концов. Уравнение окружностиСкачать

Тема 12. Формула длины отрезка с заданными координатами концов. Уравнение окружности

Длина окружности, длина дуги

Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

Длина окружности находится по формуле:

Длина дуги окружности , на которую опирается центральный угол α равна:

l α = π R 180 ∘ ⋅ α

Видео:КАК ИЗМЕРИТЬ ДЛИНУ ОКРУЖНОСТИ? · ФОРМУЛА + примеры · Длина окружности как найти? Математика 6 классСкачать

КАК ИЗМЕРИТЬ ДЛИНУ ОКРУЖНОСТИ? · ФОРМУЛА + примеры · Длина окружности как найти? Математика 6 класс

Площадь круга и его частей

Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

Круг – часть пространства, которая находится внутри окружности.

Иными словами, окружность – это граница, а круг – это то, что внутри.

Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

Площадь круга находится по формуле: S = π R 2

Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Примеры сектора в реальной жизни: кусок пиццы, веер.

Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Теорема синусов

Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

Видео:Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с окружностями.

Видео:9 класс, 26 урок, Длина окружностиСкачать

9 класс, 26 урок, Длина окружности

Длина окружности

Формула для нахождения длины отрезка в окружности

О чем эта статья:

6 класс, 9 класс, ЕГЭ/ОГЭ

Если вы не знаете, как обозначается длина окружности, то знак окружности выглядит вот так — l

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Видео:ДЛИНА ДУГИ окружности 9 класс Атанасян 1111 1112 длина окружностиСкачать

ДЛИНА ДУГИ окружности 9 класс Атанасян 1111 1112 длина окружности

Как найти длину окружности через диаметр

Хорда — это отрезок, который соединяет две точки окружности.

Диаметр — хорда, которая проходит через центр окружности. Формула длины окружности через диаметр:

π— число пи — математическая константа, примерно равная 3,14

d — диаметр окружности

Видео:Окружность и круг, 6 классСкачать

Окружность и круг, 6 класс

Как найти длину окружности через радиус

Радиус окружности — отрезок, который соединяет центр окружности с точкой на окружности. Формула длины окружности через радиус:

π — число пи, примерно равное 3,14

r — радиус окружности

Это две основные формулы для вычисления длины окружности. Ниже мы покажем еще несколько формул, которые вы сможете доказать самостоятельно, пользуясь основными формулами и свойствами геометрических фигур.

Как вычислить длину окружности через площадь круга

Если вам известна площадь круга, вы также можете узнать длину окружности:

Формула для нахождения длины отрезка в окружности

π — число пи, примерно равное 3,14

S — площадь круга

Как найти длину окружности через диагональ вписанного прямоугольника

Как измерить окружность, если в нее вписан прямоугольник:

π — число пи, примерно равное 3,14

d — диагональ прямоугольника

Как вычислить длину окружности через сторону описанного квадрата

Давайте рассмотрим, как найти длину окружности, если она вписана в квадрат и нам известна сторона квадрата:

π — математическая константа, примерно равная 3,14

a — сторона квадрата

Как найти длину окружности через стороны и площадь вписанного треугольника

Можно найти, чему равна длина окружности, если в нее вписан треугольник и известны все три его стороны, а также известна его площадь:

Формула для нахождения длины отрезка в окружности

π — математическая константа, она примерно равна 3,14

a — первая сторона треугольника

b — вторая сторона треугольника

c — третья сторона треугольника

S — площадь треугольника

Как найти длину окружности через площадь и полупериметр описанного треугольника

Можно определить, чему равна длина окружности, если круг вписан в треугольник, и известны следующие параметры: площадь треугольника и его полупериметр.

Периметр — это сумма всех сторон треугольника. Полупериметр равен половине этой суммы, то есть чтобы его найти, вам нужно рассчитать периметр и поделить его на два.

Формула для нахождения длины отрезка в окружности

π — математическая константа, примерно равная 3,14

S — площадь треугольника

p — полупериметр треугольника

Как вычислить длину окружности через сторону вписанного правильного многоугольника

Разбираемся, как в этом случае измерить окружность. Для этого необходимо посчитать, сколько сторон у многоугольника, а также знать длину стороны многоугольника. Напомним, что у правильного многоугольника все стороны равны, как у квадрата.

Формула вычисления длины окружности:
Формула для нахождения длины отрезка в окружности

π — математическая константа, примерно равная 3,14

a — сторона многоугольника

N — количество сторон многоугольника

Задачи для решения

Давайте тренироваться! Двигаемся от простого к сложному:

Задача 1. Найти длину окружности, диаметр которой равен 5 см.

Решение. Итак, нам известен диаметр окружности, значит для вычисления длины заданной окружности берем формулу:

Подставляем туда известные переменные и получается, что длина окружности равна

Задача 2. Чему равна длина окружности, описанной около правильного треугольника со стороною a = 4√3 дм

Решение. Радиус окружности равен Формула для нахождения длины отрезка в окружностиПодставим туда наши переменные и получим Формула для нахождения длины отрезка в окружности

Теперь, когда нам известен радиус окружности и есть формула длины окружности через радиус l=2πr, мы можем подставить наши данные и получить решение задачи.

Обучение на курсах по математике поможет закрепить полученные знания на практике.

Поделиться или сохранить к себе: