Физический смысл волнового вектора

волновой вектор

ВОЛНОВОЙ ВЕКТОР — вектор k, определяющий направление распространения и пространственный период плоской монохроматич. волны

Физический смысл волнового вектора

где Физический смысл волнового вектора— постоянные амплитуда и фаза волны, Физический смысл волнового вектора— круговая частота, r — радиус-вектор. Модуль В. в. наз. волновым числом k=Физический смысл волнового вектора, где Физический смысл волнового вектора— пространственный период или длина волны. В направлении В. в. происходит наибыстрейшее изменение фазы волны Физический смысл волнового вектора, поэтому оно и принимается за направление распространения. Скорость перемещения фазы в этом направлении, или фазовая скорость Физический смысл волнового вектора, определяется через волновое число Физический смысл волнового вектора. При классич. описании волновых процессов с В. в. связана плотность импульса Физический смысл волнового вектора, где Физический смысл волнового вектора— плотность энергии. В квантовом пределе соответственно импульс Физический смысл волнового вектора. Направление переноса энергии волной, вообще говоря, может и не совпадать с направлением В. в., как это имеет место, напр., в анизотропных средах или даже в изотропных средах с аномальной дисперсией, где возможен перенос энергии в направлении, противоположном В. в.

Понятие о В. в. может быть обобщено на случай квазигармонич. волн вида Физический смысл волнового вектора, если ввести локальный В. в. Физический смысл волнового вектораи мгновенную частоту Физический смысл волнового вектора. Однако, однозначная интерпретация этих величин допустима только при выполнении неравенств:

Физический смысл волнового вектора

где k; — декартовы составляющие В. в. (i, j=1, 2, 3). Эти условия устанавливают применимость лучевого описания волновых процессов (приближения геометрической оптики и геометрической акустики, квазиклассич. приближения).

Для эл—магн. гармонической волны (в вакууме) В. в. k и величина Физический смысл волнового вектора(с — скорость света) объединяются в единый волновой четырёхвектор, компоненты к-рого подчиняются при переходе от одной инерциальной системы отсчёта к другой (движущейся с относит. скоростью u) Лоренца преобразованием:

Физический смысл волнового вектора

Первое из этих соотношений определяет Доплера аффект, второе — эффект аберрации углов прихода волн (или формируемых ими лучей).

M. А. Миллер, Г. В. Пермитин.

Содержание
  1. Волновое число: физический смысл, размерность, формулы, примеры расчета
  2. Волновое число в спектроскопии
  3. Единица измерения волнового числа
  4. Разница между волновым числом и угловым волновым числом
  5. Пример расчета волнового числа
  6. Пример расчета углового волнового числа
  7. Преобразование длины волны в волновой число
  8. Волновое движение в физике — формулы и определение с примерами
  9. Уравнение бегущей волны
  10. Физический смысл волнового числа
  11. Фронт волны и волновая поверхность
  12. Стоячие волны
  13. Интерференция волн
  14. Условие максимума и минимума при интерференции двух волн
  15. Распространение волн. Принцип Гюйгенса – Френеля
  16. Дифракция механических волн
  17. Условие возникновения стоячей волны в струне
  18. Визуализация звуковых волн
  19. Распространение колебаний в упругих средах. Продольные и поперечные волны
  20. Звуковые волны. Скорость звука. Ультразвук
  21. 🎦 Видео

Видео:Урок 454. Понятие о волновой функцииСкачать

Урок 454. Понятие о волновой функции

Волновое число: физический смысл, размерность, формулы, примеры расчета

Вы хотите знать, в чем разница между волновым числом и угловым волновым числом и как их рассчитать? Тогда эта статья как раз для вас. Мы подробно объясним эту тему и покажем на примере, как можно рассчитать эти величины.

Если вы рассматриваете электромагнитную волну с определенной длиной волны, то волновое число является обратным этой длине волны — оно ведет себя противоположным образом. Например, если длина волны увеличивается, волновое число уменьшается. Если, с другой стороны, длина волны уменьшается, то волновое число увеличивается.

Видео:Волновая функция (видео 5) | Квантовая физика | ФизикаСкачать

Волновая функция (видео 5) | Квантовая физика | Физика

Волновое число в спектроскопии

Волновое число k определяется в спектроскопии как обратная величина длины волны λ, то есть ξ = 1 / λ (называется еще пространственной частотой). Однако его также можно выразить через частоту f и скорость света в вакууме c, тогда ξ = f / c или также через число n длин волн, укладывающихся в определенную длину l, то есть ξ = n / l .

В целом, для волнового числа применимо следующее соотношение: ξ = 1 / λ = f / c = n / l .

Важно: Волновое число ξ не следует путать с частотой f. Частота имеет единицу измерения Гц = 1 / с = с -1 и определяется через обратную величину периода T: f = 1 / T . Она показывает, как часто электромагнитная волна колеблется в секунду.

Физический смысл волнового вектора

Видео:Что такое волновая функция? Душкин объяснитСкачать

Что такое волновая функция? Душкин объяснит

Единица измерения волнового числа

Обычно волновое число выражается в в следующих единицах измерения (в СИ): 1 / м = м -1 , что соответствует числу колебаний на метр. Однако единица может быть также преобразована, например, в единицы 1 / см = см -1 или 1 / мм = мм -1 .

Между этими единицами измерения существует следующая взаимосвязь: 1 м -1 = 0,01 см -1 = 0,001 мм -1 , соответственно 1 мм -1 = 100 см -1 = 1000 м -1 .

Видео:Квантовая механика 8 - Операторы. Собственные векторы и собственные значения.Скачать

Квантовая механика 8 - Операторы. Собственные векторы и собственные значения.

Разница между волновым числом и угловым волновым числом

Угловое волновое число часто ошибочно называют просто волновым числом. Однако, угловое волновое число k является величиной волнового вектора k и связано с волновым числом ξ следующим образом: k = | k | = 2*π*ξ = ω / c = 2*π / λ . В этой формуле где ω представляет собой так называемую угловую частоту. Волновой вектор — это вектор, перпендикулярный волновому фронту волны. Эта формула показывает, что волновое число ξ также может быть вычислено из углового волнового числа k: ξ = k / 2*π .

Важно: Угловую частоту и частоту также нельзя путать друг с другом. Угловая частота ω связана с частотой f следующим образом: ω = 2*π*f .

Физический смысл волнового числа.

Волновое число численно равно числу периодов волны, укладывающихся в отрезок 2π метров. Это пространственный аналог круговой частоты ω (рад·с -1 ). Характеристика периодического процесса в пространстве.

Видео:ЧК_МИФ: 4.1.1.ДФ_1 Физический смысл уравнений МаксвеллаСкачать

ЧК_МИФ: 4.1.1.ДФ_1 Физический смысл уравнений  Максвелла

Пример расчета волнового числа

Если мы наблюдаем электромагнитную волну с длиной волны λ = 500 нм и хотим вычислить по ней волновое число ξ, то поступаем следующим образом. Чтобы получить размерность м -1 сначала переведите длину волны в метры. То есть 500 нм = 500 * 10 -9 м = 5*10 -7 м.

Используя представленную выше формулу, вы можете определить соответствующее волновое число: ξ = 1 / λ = 1 / 5*10 -7 = 2*10 6 м -1 .

На одном метре волна колеблется 2 миллиона раз. Если преобразовать единицу измерения, то можно сказать, что волна колеблется 2000 раз на одном миллиметре: 2 * 10 6 м -1 = 0,001 * 2 * 10 6 мм -1 = 2000 мм -1 .

Видео:Оператор набла (оператор Гамильтона) и оператор ЛапласаСкачать

Оператор набла (оператор Гамильтона) и оператор Лапласа

Пример расчета углового волнового числа

Если использовать ту же длину волны λ = 500 нм =5 *10 -7 м, как в предыдущем примере, и подставьте это значение в формулу для расчета углового волнового числа, то это приведет к следующим результатам: k = 2 * π / λ = 2 * π / 5 *10 -7 м = 1,2566 * 10 7 м -1 .

Легко видеть, что угловое волновое число k отличается от волнового числа ξ из предыдущего примера:

ξ = 2*10 6 м -1 ↔ k = 1,2566 * 10 7 м -1

Видео:Билеты №32, 33 "Уравнения Максвелла"Скачать

Билеты №32, 33 "Уравнения Максвелла"

Преобразование длины волны в волновой число

В следующей таблице показаны два направления преобразования из длины волны в волновое число и наоборот. Кроме того, в последней колонке перечислены некоторые области применения спектроскопии:

Видео:Квантовая механика 7 - Вектор состояния. Амплитуда вероятности.Скачать

Квантовая механика 7 - Вектор состояния. Амплитуда вероятности.

Волновое движение в физике — формулы и определение с примерами

Содержание:

Волновое движение:

Процесс распространения колебаний в упругой среде называют механической волной. Для механических волн нужна среда, обладающая способностью запасать кинетическую и потенциальную энергию, она должна обладать инертными и упругими свойствами.

Различают поперечные и продольные волны. Продольные волны могут распространяться в любых средах: твердых, жидких и газообразных; поперечные – только в твердых средах.

Как в поперечных, так и в продольных волнах переноса вещества в направлении распространения волны не происходит. Волны переносят энергию колебаний.

Изучив страницу, вы сможете:

  • исследовать образование стоячих звуковых волн в воздухе;
  • объяснять механизм образования стоячих волн, определять узлы и пучности, используя графический метод;
  • исследовать интерференцию от двух источников на поверхности воды;
  • объяснять принцип Гюйгенса и условия наблюдения дифракционной картины механических волн.

Видео:Олегу Тинькову запрещён вход на Мехмат МГУСкачать

Олегу Тинькову запрещён вход на Мехмат МГУ

Уравнение бегущей волны

Колебательное движение тела в упругой среде является источником механической волны.

Волну, переносящую энергию, называют бегущей волной.

В однородной среде скорость распространения волны остается величиной постоянной. Смещение y (x, t) от положения равновесия частиц среды при распространении волны зависит от координаты x на оси 0х, вдоль которой распространяется волна, и от времени t по закону:

Физический смысл волнового вектора

где Физический смысл волнового вектора

Введем волновое число Физический смысл волнового векторатогда уравнение бегущей волны примет вид Физический смысл волнового вектора

Смещение точек упругой среды в волне, бегущей в противоположном направлении выбранной оси 0х, можно определить по формуле: Физический смысл волнового вектора

Физический смысл волнового вектора

Вспомните! Основные характеристики волн. Волны, созданные источником, совершающим гармонические колебания, характеризуются амплитудой колебания частиц среды A, частотой Физический смысл волнового векторадлиной волны Физический смысл волнового вектораи скоростью распространения Физический смысл волнового вектора

Длиной волны Физический смысл волнового вектораназывают расстояние между двумя соседними точками на оси 0х, колеблющимися в одинаковых фазах. Расстояние, равное длине волны Физический смысл волнового вектора, волна пробегает за период Т, следовательно, Физический смысл волнового вектораВ однородных средах скорость распространения волны величина постоянная.

Видео:Структура материи 6: уравнение Шрёдингера. Зачем нужна квантовая механика – Виталий Бейлин | НаучпопСкачать

Структура материи 6: уравнение Шрёдингера. Зачем нужна квантовая механика – Виталий Бейлин | Научпоп

Физический смысл волнового числа

Запишем формулу (2), выразив циклическую частоту через период Физический смысл волнового векторас учетом определения длины волны Физический смысл волнового вектораполучим: Физический смысл волнового вектора

Бегущая волна обладает двойной периодичностью – во времени и в пространстве. Временной период равен периоду колебаний T частиц среды, пространственный период равен длине волны Физический смысл волнового вектораВолновое число Физический смысл волнового вектораявляется пространственным аналогом циклической частоты Физический смысл волнового вектора

Видео:Простое объяснение квантовой волновой функции с канала DoSСкачать

Простое объяснение квантовой волновой функции с канала DoS

Фронт волны и волновая поверхность

Волна за время, равное периоду колебаний, достигает точек пространства, расположенных от источника на расстоянии длины волны. Совокупность этих точек представляет собой фронт волны, который отделяет колеблющиеся точки среды от точек, не вовлеченных в колебательное движение. Фронт волны от точечного источника представляет собой сферу, от плоской пластины – плоскость, от струны – форму цилиндра (рис. 79–81).

Физический смысл волнового вектора

Фронт волны – это геометрическое место точек пространства, до которых дошли колебания в данный момент времени t.

Направление распространения волны указывает луч, который перпендикулярен фронту волны.

В волне можно рассмотреть множество поверхностей, все точки которых совершают колебания синфазно, их называют волновыми поверхностями. При множестве волновых поверхностей, фронт волны только один.

Геометрическое место точек пространства, которые совершают колебания в одинаковой фазе в данный момент времени, называют волновой поверхностью.

Видео:Основные физические понятия технической электродинамики, 1978Скачать

Основные физические понятия технической электродинамики, 1978

Стоячие волны

Уравнение стоячей волны При отражении от более плотной среды волна, изменив свое направление на обратное, меняет фазу на Физический смысл волнового векторато есть на противоположную. В результате сложения падающей и отраженной волн образуется стоячая волна. Она имеет вид, представленный на рисунке 83. В стоячей волне существуют неподвижные точки, которые называются узлами. Посередине между узлами находятся точки, которые колеблются с максимальной амплитудой. Эти точки называются пучностями.

Получим уравнение стоячей волны путем сложения уравнений бегущих волн: Физический смысл волнового вектора

Заменив волновое число его значением Физический смысл волнового векторазапишем уравнение стоячей волны в виде: Физический смысл волнового вектора

Координаты точек пучностей и узлов определяются из условий наибольшего и наименьшего значений амплитуды. При Физический смысл волнового вектораобразуется пучность с амплитудой равной 2 А (рис. 84). Расстояния от источника стоячей волны до пучностей равны: Физический смысл волнового вектора

Физический смысл волнового вектора

При Физический смысл волнового вектораобразуются узлы, амплитуда колебаний в этой точке равна 0. Расстояния от источника волны до узлов равны:

Физический смысл волнового вектора

Расстояния между двумя соседними пучностями или двумя соседними узлами равны:

Физический смысл волнового вектора

В стоячей волне нет потока энергии. Колебательная энергия, заключенная в отрезке струны между двумя соседними узлами, не переносится в другие части струны. В каждом таком отрезке происходит дважды за период превращение кинетической энергии в потенциальную и обратно как в обычной колебательной системе. Отсутствие переноса энергии является отличительной особенностью стоячей волны.

Пример:

Уравнение бегущей волны, изображенной на рисунке (рис. 85): Физический смысл волнового вектора. Уравнение отраженной волны: Физический смысл волнового вектора

А. Получите уравнение стоячей волны как сумму падающей и отраженной волн.

В. Полученное выражение запишите, заменив волновое число и циклическую частоту через длину волны и период.

С. Определите положение узлов и пучностей.

Физический смысл волнового вектора

Дано:

Физический смысл волнового вектора

Физический смысл волнового вектора

Решение: А. Уравнение стоячей волны определятся сложением уравнений бегущих волн: Физический смысл волнового вектораФизический смысл волнового вектора

В. Физический смысл волнового вектора

С. При Физический смысл волнового вектораобразуется пучность с амплитудой 2А. Расстояние от источника до пучностей Физический смысл волнового вектора

С. Расстояние от узлов определим из условия Физический смысл волнового векторатогдаФизический смысл волнового вектора

Ответ: Физический смысл волнового вектораФизический смысл волнового вектора

Интерференция волн

Если в некоторой среде несколько источников возбуждают механические волны, то они распространяются независимо друг от друга. Все точки среды принимают участие в колебаниях, вызванных каждой волной в отдельности. Наложение волн, в результате которой появляется устойчивая картина чередующихся максимумов и минимумов колебаний частиц среды, называют интерференцией.

Интерферировать могут только волны, имеющие одинаковую частоту и постоянный сдвиг фаз. Такие волны называют когерентными, их создают источники, колеблющиеся с одинаковой частотой и постоянным значением сдвига фаз.

Интерференция волн – взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга.

Интерференция бывает стационарной и нестационарной. Стационарную интерференционную картину могут давать только когерентные волны: например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников (рис. 87).

Запомните! Волны называют когерентными, если их источники совершают колебания одной частоты с постоянным сдвигом фаз.

Физический смысл волнового вектора

Условие максимума и минимума при интерференции двух волн

Амплитуда колебаний при наложении волн определяется в соответствии с принципом суперпозиции (рис. 88). Если в некоторой точке среды накладываются гребни когерентных волн, то происходит усиление колебаний, амплитуда принимает значение, равное сумме амплитуд. Если накладывается гребень одной волны с впадиной другой волны, то при равенстве амплитуд отдельно взятых волн данная точка пространства не совершает колебания. Если амплитуды отличаются, то колебания в этой точке совершаются с амплитудой равной разности амплитуд распространяющихся волн.

Физический смысл волнового вектора

Для определения результата интерференции волн, распространяющихся от двух источников А и В, находящихся на расстоянии Физический смысл волнового вектораот точки С, достаточно определить разность хода волн и сравнить с длиной волны. Если разность хода равна целому числу длин волн, то в точке С произойдет наложение гребней или впадин, амплитуда колебаний возрастет (рис. 89). Выполняется условие максимума:

Физический смысл волнового вектора

где Физический смысл волнового вектора− разность хода волн, Физический смысл волнового вектора– натуральное число, равное 0, 1, 2, 3 … Разность хода лучей соответствует разности фаз колебаний:

Физический смысл волнового вектора

так как волна за период пробегает расстояние равное длине волны Физический смысл волнового векторапериоду Т соответствует фаза Физический смысл волнового вектора

Минимум колебаний в рассматриваемой точке среды наблюдается в том случае, если от двух когерентных источников распространяются волны со сдвигом фаз, равным нечетному числу p, а разность хода лучей кратна нечетному числу полуволн. В этом случае колебания происходят в противофазе (рис. 90).

Возьмите на заметку:

Интерференция волн приводит к перераспределению энергии колебаний между частицами среды. Это не противоречит закону сохранения энергии, так как в среднем, для большой области пространства, энергия результирующей волны равна сумме энергий интерферирующих волн.

Физический смысл волнового вектора

Распространение волн. Принцип Гюйгенса – Френеля

На основе принципа Х. Гюйгенса: каждая точка среды, до которой дошло возмущение, является источником вторичных волн, невозможно объяснить, почему источники вторичных волн создают фронт только по направлению распространения волны. Для объяснения явлений распространения волны французский физик О. Френель в 1815 г. дополнил принцип Х. Гюйгенса представлениями о когерентности и интерференции вторичных волн. При наложении вторичных когерентных волн происходит интерференция, в результате которой амплитуда колебаний в различных точках пространства становится разной: по направлению распространения волны усиливается, в обратном направлении – уменьшается. Огибающая фронты вторичных волн является фронтом результирующей волны (рис. 92).

Физический смысл волнового вектора

Дифракция механических волн

Вторичные волны, созданные точками среды, которые находятся на краю отверстия или препятствия, искривляются и волна огибает препятствие (рис. 93 а–г).

Физический смысл волнового вектора

Дифракция – это явление огибания волнами препятствий.

Все волны способны огибать препятствия, если длина волны соизмерима с размерами препятствия. Дифракция становится заметной, если размеры препятствия меньше длины волны.

Физика в нашей жизни:

Струнные музыкальные инструменты

Интересно знать! Адырна (рис. 96 а) – один из древнейших казахских струнных инструментов. В его форме отобразилась воинственность кочевников-казахов: он напоминает изогнутый лук воина. Деревянный корпус инструмента легкий, так как он пустотелый. Струны изготавливают из кусков специально выделанной кожи или сплетенных из верблюжьей шерсти нитей. Музыкант играет, перебирая струны. Их в инструменте 13. Жетыген (рис. 96 б) – семиструнный музыкальный инструмент. Он имеет прямоугольную форму, изготовлен из дерева, струны – из конского волоса. Легенда о жетыгене раскрывает причину использования именно семи струн. Старик, потерявший семерых сыновей, вылил свое горе, исполняя кюи о них. Вспоминая каждого из сыновей, он натягивал новую струну на музыкальном инструменте.

Физический смысл волнового вектора

Условие возникновения стоячей волны в струне

Стоячая волна в струне возникает только в том случае, если длина Физический смысл волнового вектораструны равняется целому числу длин полуволн: Физический смысл волнового вектора

Набору значений Физический смысл волнового векторадлин волн соответствует набор возможных частот Физический смысл волнового вектораКаждая из частот Физический смысл волнового вектораи связанный с ней тип колебания струны называется нормальной модой. Наименьшая частота называется основной частотой, все остальные частоты называются гармониками.

В отличие от груза на пружине или маятника, у которых имеется единственная собственная частота, струна обладает бесконечным числом собственных резонансных частот. На рисунке 96 в изображены несколько типов стоячих волн в струне. Стоячие волны различных типов могут одновременно присутствовать в колебаниях струны.

Визуализация звуковых волн

Существует несколько способов демонстрации стоячей волны, один из них – фигуры Хладни (рис. 97). Немецкий физик Эрнст Хладни получал узор, посыпая пластинку песком и проводя по краю смычком. Движения смычка заставляли пластинку колебаться на некоторой резонансной частоте. Песок скапливался и лежал неподвижно в узлах, а на участках, где отраженная волна усиливала бегущую, песок смещался.

Физический смысл волнового вектора

Интересно знать! В Шотландии есть рослинская капелла св. Матвея, на одной из арок которой есть 213 резных каменных кубов, с вырезанным на них геометрическим рисунком. Многие исследователи пытались понять, что зашифровано в рисунках на кубах. Отставной генерал ВВС Томас Митчел со своим сыном, пианистом Стюартом Митчелом предложили оригинальный способ расшифровки послания. Они сопоставили геометрические рисунки с фигурами Хладни и пришли к выводу, что на кубах записаны ноты. Собрав ноты воедино и творчески обработав их, они представили миру произведение «Рослинский Мотет».

Итоги:

Физический смысл волнового вектора

Глоссарий

Волновая поверхность – геометрическое место точек, имеющих одинаковую фазу колебаний.

Дифракция – явление огибания волнами препятствий.

Интерференция волн – взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга.

Когерентные волны – волны, имеющие одинаковую частоту и постоянный сдвиг фаз.

Механическая волна – процесс распространения колебаний в упругой среде.

Фронт волны – геометрическое место точек пространства, до которых дошли колебания в данный момент времени t.

Видео:Квантовая физика простым языком - поймут всеСкачать

Квантовая физика простым языком - поймут все

Распространение колебаний в упругих средах. Продольные и поперечные волны

Опыт показывает, что колебания, возбужденные в какой-либо точке упругой среды, с течением времени передаются в ее другие точки. В качестве примера достаточно вспомнить, что измерение пульса осуществляется на запястье, хотя сердце расположено внутри грудной клетки. Такие явления связаны с распространением механических волн.

Механической волной называется процесс распространения колебаний в упругой среде, который сопровождается передачей энергии от одной точки среды к другой.

Механические волны не могут распространяться в вакууме.
Источником механических волн является колеблющееся тело. Если источник колеблется синусоидально, то и волна в упругой среде будет иметь форму синусоиды. Колебания, вызванные в каком-либо месте упругой среды, распространяются в ней с определенной скоростью, зависящей от плотности и упругих свойств среды.

Подчеркнем, что при распространении волны отсутствует перенос вещества, т. е. частицы колеблются вблизи положений равновесия. Среднее смещение частиц за большой промежуток времени равно нулю.
Рассмотрим основные характеристики волны.

Волновой фронт — это воображаемая поверхность, до которой дошло волновое возмущение в данный момент времени.

Линия, проведенная перпендикулярно волновому фронту в направлении распространения волны, называется лучом. Луч указывает направление распространения волны.

Физический смысл волнового вектора

Основными характеристиками волны являются (рис. 208):

  • амплитуда (A) — модуль максимального смещения точек среды из положений равновесия при колебаниях;
  • период (T) — время полного колебания (период колебаний точек среды равен периоду колебаний источника волны);
  • частотаФизический смысл волнового вектора— число полных колебаний в данной точке в единицу времени. Частота волн определяется частотой источника;
  • скоростьФизический смысл волнового вектора— скорость перемещения гребня волны (это не скорость частиц!):Физический смысл волнового вектора
  • длина волныФизический смысл волнового вектора— наименьшее расстояние между двумя точками, колебания в которых происходят в одинаковой фазе, т. е. это расстояние, на которое волна распространяется за промежуток времени, равный периоду колебаний источника Физический смысл волнового вектора

Рассмотрим колебания источника волны, происходящие с циклической частотой Физический смысл волнового вектораи амплитудой А:
Физический смысл волнового вектора
где x(t) — смещение источника от положения равновесия.

В некоторую точку среды колебания придут не мгновенно, а через промежуток времени, определяемый скоростью волны и расстоянием от источника до точки наблюдения. Если скорость волны в данной среде равна v, то зависимость от времени t координаты (смещения) х колеблющейся точки, находящейся на расстоянии r от источника, описывается функцией
Физический смысл волнового вектора
где k — волновое число Физический смысл волнового векторафаза волны.

Выражение х(t, r) называется уравнением плоской волны, распространяющейся (бегущей) вдоль направления радиус-вектора Физический смысл волнового вектора

Бегущую волну можно наблюдать, проведя следующий опыт: если один конец резинового шнура, лежащего на гладком горизонтальном столе, закрепить и, слегка натянув шнур рукой, привести его второй конец в колебательное движение в направлении, перпендикулярном шнуру, то по нему побежит волна, описываемая уравнением плоской волны.

Рассмотрим классификацию бегущих волн по направлению колебаний частиц среды, в которой они распространяются.

Волна называется продольной, если колебания частиц среды происходят вдоль направления распространения волн. Продольную волну легко получить с помощью длинной пружины, которая лежит на гладкой горизонтальной поверхности и один конец ее закреплен. Легким ударом по свободному концу В пружины мы вызовем появление волны (рис. 209).

Физический смысл волнового вектора

При этом каждый виток пружины будет колебаться вдоль направления распространения волны ВС. Примерами продольных волн являются звуковые волны в воздухе и жидкости.

Волна называется поперечной, если частицы среды колеблются в плоскости, перпендикулярной направлению распространения волны. С помощью длинной пружины можно продемонстрировать распространение поперечных волн, если совершать колебания незакрепленного конца перпендикулярно пружине (рис. 210).

Физический смысл волнового вектора

Поперечные волны вызывают звучание струн музыкальных инструментов при их возбуждении.

Продольные колебания симметричны относительно линии распространения ВС, и их действие на любой регистрирующий прибор не изменяется, если прибор будет поворачиваться вокруг направления распространения.

Действие поперечных волн на регистрирующий прибор зависит от того, в какой плоскости, проходящей через линию распространения, происходит колебание. Эта особенность поперечных волн носит название поляризации. Если колебания происходят в одной плоскости, то волну называют плоско или линейно поляризованной. Если конец вектора колебаний, например вектора смещения, скорости, напряженности электрического поля, описывает эллипс или окружность, то волну называют эллиптически или циркулярно-поляризованной.

До сих пор мы рассматривали волны, распространяющиеся в какой-либо среде. Волны, которые распространяются на границе раздела двух сред, называются поверхностными волнами. Примером данного типа волн служат волны на поверхности воды.

Звуковые волны. Скорость звука. Ультразвук

Звуком называются колебания среды, воспринимаемые органами слуха.
Раздел физики, в котором изучаются звуковые явления, называется акустикой.

Звуковая волна — упругая продольная волна, представляющая собой зоны сжатия и разрежения упругой среды (например, воздуха), распространяющиеся в пространстве с течением времени. Таким образом, в процессе распространения звуковой волны меняются такие характеристики среды, как давление и плотность.

Звуковые волны классифицируются по частоте следующим образом:

  • инфразвук Физический смысл волнового вектора
  • слышимый человеком звук Физический смысл волнового вектора
  • ультразвук Физический смысл волнового вектора
  • гиперзвук Физический смысл волнового вектора

Многие животные могут воспринимать ультразвуковые частоты. Например, собаки могут слышать звуки до 50 000 Гц, а летучие мыши — до 100 000 Гц. Инфразвук, распространяясь в воде на сотни километров, помогает китам и многим другим морским животным ориентироваться в толще воды.
Звуковые волны приносят человеку жизненно важную информацию — с их помощью мы общаемся, наслаждаемся мелодиями, узнаем по голосу знакомых людей. Мир окружающих нас звуков разнообразен и сложен, однако мы достаточно легко ориентируемся в нем и безошибочно можем отличить пение птиц от шума городской улицы.

Одной из важнейших характеристик звуковых волн является спектр. Спектром называется набор различных частот, образующих данный звуковой сигнал. Спектр может быть сплошным или дискретным.

В сплошном спектре присутствуют волны, частоты которых заполняют весь заданный спектральный диапазон.
В

дискретном спектре — конечное число волн с определенными частотами и амплитудами, которые образуют рассматриваемый сигнал.

По типу спектра звуки разделяются на шумы и музыкальные тона.

Шум — совокупность множества разнообразных кратковременных звуков (хруст, шелест, шорох, стук и т.п.) — представляет собой наложение большого числа колебаний с близкими амплитудами, но различными частотами (имеет сплошной спектр).

Музыкальный тон создается периодическими колебаниями звучащего тела (камертон, струна) и представляет собой гармоническое колебание одной частоты. На основе музыкальных тонов создана музыкальная азбука — ноты (до, ре, ми, фа, соль, ля, си), которые позволяют воспроизводить одну и ту же мелодию па различных музыкальных инструментах.

Музыкальный звук (созвучие) — результат наложения нескольких одновременно звучащих музыкальных тонов, из которых можно выделить

основной тон, соответствующий наименьшей частоте. Основной тон называется также первой гармоникой. Все остальные тоны называются обертонами. Обертоны называются гармоническими, если частоты обертонов кратны частоте основного тона. Таким образом, музыкальный звук имеет дискретный спектр.

Любой звук, помимо частоты, характеризуется интенсивностью.

Интенсивность I — это энергия Физический смысл волнового векторапереносимая волной в единицу времени Физический смысл волнового вектора= 1 с через единичную площадку площадью Физический смысл волнового векторарасположенную перпендикулярно к направлению распространения волны:
Физический смысл волнового вектора

Другими словами, интенсивность любой волны — мощность, переносимая волной через единичную площадку, расположенную перпендикулярно к направлению распространения волны.

Единицей интенсивности в СИ является ватт на метр в квадрате Физический смысл волнового вектора
Чтобы вызвать звуковые ощущения, волна должна обладать некоторой минимальной интенсивностью, называемой порогом слышимости.

С возрастом порог слышимости человека возрастает.

Интенсивность звуковых волн, при которой возникает ощущение боли, называют порогом болевого ощущения или болевым порогом. Интенсивность звука, улавливаемого ухом человека, лежит в широких пределах: от Физический смысл волнового вектора(порог слышимости) до Физический смысл волнового вектора(порог болевого ощущения). Человек может слышать и более интенсивные звуки, но при этом он будет испытывать боль.

Реактивный самолет может создать звук интенсивностью Физический смысл волнового векторамощные усилители на концерте в закрытом помещении — до Физический смысл волнового векторапоезд метро — около Физический смысл волнового вектора

Уровни интенсивности звука L определяют обычно, используя шкалу, единицей которой является бел (Б) или, что гораздо чаще, децибел (дБ) (одна десятая бела). 1 Б самый слабый звук, который воспринимает наше ухо. Единица названа в честь изобретателя телефона А. Г. Белла. Измерение уровня интенсивности в децибелах проще, поэтому принято в физике и технике.

Уровень интенсивности L любого звука в децибелах вычисляется через интенсивность звука по формуле

Физический смысл волнового вектора
где I — интенсивность данного звука, Физический смысл волнового вектора— интенсивность Физический смысл волнового векторасоответствующая минимально возможной интенсивности звука, улавливаемого ухом человека.

Так, поезд метро создает уровень интенсивности звука 100 дБ, мощные усилители — 120 дБ, а реактивный самолет — 150 дБ. Тем, кто при работе подвергается воздействию шума свыше 100 дБ, следует пользоваться наушниками.

Физическим характеристикам звука соответствуют определенные (субъективные) характеристики, связанные с восприятием его конкретным человеком. Это связано с тем, что восприятие звука — процесс не только

физический, но и физиологический. Действительно, человеческое ухо воспринимает звуковые колебания определенных частот и интенсивностей (это объективные, не зависящие от человека характеристики звука) по-разному, в зависимости от «характеристик приемника» (здесь влияют субъективные индивидуальные черты каждого человека).

Основными физиологическими характеристиками звука являются громкость, высота и тембр.

Громкость (степень слышимости звука) определяется как интенсивностью звука (амплитудой колебаний в звуковой волне), так и различной чувствительностью человеческого уха на разных частотах, т. е. его способностью улавливать звуки различных частот. Наибольшей чувствительностью человеческое ухо обладает в диапазоне частот от 1000 Гц до

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

🎦 Видео

Квантовая механика 49 - Реальна ли волновая функция?Скачать

Квантовая механика 49 - Реальна ли волновая функция?

Квантовая механика. Основа реальности часть 1. Волновая функция.Скачать

Квантовая механика.  Основа реальности часть 1.  Волновая функция.

Физический смысл тока и напряжения. Часть 1Скачать

Физический смысл тока и напряжения.  Часть 1

Физика. Лекция 8. Уравнения Максвелла и электромагнитные волны.Скачать

Физика. Лекция 8. Уравнения Максвелла и электромагнитные волны.

Урок 370. Механические волны. Математическое описание бегущей волныСкачать

Урок 370. Механические волны. Математическое описание бегущей волны

О чем говорят уравнения Максвелла? Видео 1/2Скачать

О чем говорят уравнения Максвелла? Видео 1/2

Александр Чирцов: ротор, дивергенция и градиентСкачать

Александр Чирцов: ротор, дивергенция и градиент
Поделиться или сохранить к себе: