Если в четырехугольник можно вписать окружность то биссектрисы его углов пересекаются в одной точке

Please wait.

Видео:Биссектрисы пересекаются в одной точке| Задачи 11-20 | Решение задач | Волчкевич|Уроки геометрии 7-8Скачать

Биссектрисы пересекаются в одной точке| Задачи 11-20 | Решение задач | Волчкевич|Уроки геометрии 7-8

We are checking your browser. mathvox.ru

Видео:Биссектрисы пересекаются в одной точке| Задачи 28-33 | Решение задач | Волчкевич|Уроки геометрии 7-8Скачать

Биссектрисы пересекаются в одной точке| Задачи 28-33 | Решение задач | Волчкевич|Уроки геометрии 7-8

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

Видео:Биссектрисы пересекаются в одной точке| Задачи 1-10 | Решение задач | Волчкевич| Уроки геометрии 7-8Скачать

Биссектрисы пересекаются в одной точке| Задачи 1-10 | Решение задач | Волчкевич| Уроки геометрии 7-8

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Cloudflare Ray ID: 6c9eabea6c6d3a6b • Your IP : 85.95.179.65 • Performance & security by Cloudflare

Видео:Геометрия Если четырехугольник является описанным около окружности, то суммы его противолежащихСкачать

Геометрия Если четырехугольник является описанным около окружности, то суммы его противолежащих

Если в четырехугольник можно вписать окружность то биссектрисы его углов пересекаются в одной точке

Ключевые слова: окружность, описанная окружность, центр окружности, вписанная окружность, треугольник, четырехугольник, вневписанная окружность

Окружность называется вписанной в угол, если она лежит внутри угла и касается его сторон.

Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Окружность называется вписанной в выпуклый многоугольник, если она лежит внутри данного многоугольника и касается всех прямых, проходящих через его стороны.

Если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех углов данного многоугольника пересекаются в одной точке, которая является центром вписанной окружности.
Сам многоугольник в таком случае называется описанным около данной окружности.
Таким образом, в выпуклый многоугольник можно вписать не более одной окружности.

Для произвольного многоугольника невозможно вписать в него и описать около него окружность.
Для треуголь ника это всегда возможно.

Окружность называется вписанной в треугольник, если она касается всех трех его сторон, а её центр находится внутри окружности

  • Центр вписанной в треугольник окружности лежит на пересечении биссектрис внутренних углов треугольника.
  • В любой треугольник можно вписать окружность, и только одну.
  • Радиус вписанной в треугольник окружности равен отношению площади треугольника и его полупериметра: $$r = frac

    $$ , где S — площадь треугольника, а $$p =frac$$ — полупериметр треугольника.

Серединным перпендикуляром называют прямую перпендикулярную отрезку и проходящую через его середину.

Окружность называется описанной около треугольника, если она проходит через три его вершины.

Окружность, вписанная в прямоугольный треугольник

Окружность, описанная около прямоугольного треугольника

Четырехугольник, вписанный в окружность

Окружность, вписанная в ромб

Вписанная окружность

Окружность вписанная в многоугольник — это окружность, которая касается всех сторон многоугольника. Центр вписанной окружности лежит внутри многоугольника, в который она вписана. Описанный около окружности многоугольник — это многоугольник, в который вписана окружность. На рисунке 1 четырехугольник АВСD описан около окружности с центром О, а четырехугольник АЕКD не является описанным около этой окружности, так как сторона ЕК не касается окружности.

Если в четырехугольник можно вписать окружность то биссектрисы его углов пересекаются в одной точке

Теорема

В любой треугольник можно вписать окружность.

Доказательство

Дано: произвольный Если в четырехугольник можно вписать окружность то биссектрисы его углов пересекаются в одной точкеАВС.

Доказать: в Если в четырехугольник можно вписать окружность то биссектрисы его углов пересекаются в одной точкеАВС можно вписать окружность.

Доказательство:

1. Проведем биссектрисы углов А, В и С, которые пересекутся в точке О (следствие из свойства биссектрис). Из точки О проведем перпендикуляры ОК, ОL и ОМ соответственно к сторонам АВ, ВС и СА (Рис. 2).

Если в четырехугольник можно вписать окружность то биссектрисы его углов пересекаются в одной точке

2. Точка О равноудалена от сторон Если в четырехугольник можно вписать окружность то биссектрисы его углов пересекаются в одной точкеАВС (свойство биссектрис), поэтому ОК = ОL = ОМ. Следовательно, окружность с центром О радиуса ОК проходит через точки К, L и М. Стороны Если в четырехугольник можно вписать окружность то биссектрисы его углов пересекаются в одной точкеАВС касаются этой окружности в точках К, L, М, т.к. они перпендикулярны к радиусам ОК, ОL и ОМ. Значит, окружность с центром О радиуса ОК является вписанной в Если в четырехугольник можно вписать окружность то биссектрисы его углов пересекаются в одной точкеАВС. Теорема доказана.

Замечание 1

В треугольник можно вписать только одну окружность.

Доказательство

Предположим, что в треугольник можно вписать две окружности. Тогда центр каждой окружности равноудален от сторон треугольника и, значит, совпадает с точкой О пересечения биссектрис треугольника, а радиус равен расстоянию от точки О до сторон треугольника. Следовательно, эти окружности совпадают, значит в треугольник можно вписать только одну окружность. Что и требовалось доказать.

Замечание 2

Площадь треугольника равна произведению его полупериметра на радиус вписанной в него окружности.

Доказательство

На рисунке 2 мы видим, что Если в четырехугольник можно вписать окружность то биссектрисы его углов пересекаются в одной точкеАВС составлен из трех треугольников: АВО, ВСО и САО. Пусть АВ, ВС и АС основания треугольников АВО, ВСО и САО соответственно, тогда высотами данных треугольников окажутся отрезки ОК = ОL = ОМ = r ( r — радиус окружности с центром О). Следовательно, площади этих треугольников вычисляются по формулам: Если в четырехугольник можно вписать окружность то биссектрисы его углов пересекаются в одной точке. Тогда, по свойству площадей, площадь треугольника Если в четырехугольник можно вписать окружность то биссектрисы его углов пересекаются в одной точкеАВС выражается формулой: Если в четырехугольник можно вписать окружность то биссектрисы его углов пересекаются в одной точке, где Если в четырехугольник можно вписать окружность то биссектрисы его углов пересекаются в одной точке— периметр Если в четырехугольник можно вписать окружность то биссектрисы его углов пересекаются в одной точкеАВС. Что и требовалось доказать.

Замечание 3

Не во всякий четырехугольник можно вписать окружность.

Доказательство

Рассмотрим, например, прямоугольник, у которого смежные стороны не равны, т.е. прямоугольник, не являющийся квадратом. В такой прямоугольник можно «поместить» окружность, касающуюся трех его сторон (Рис.3), но нельзя «поместить» окружность так, чтобы она касалась всех четырех его сторон, т.к. диаметр окружности меньше большей стороны прямоугольника т.е. нельзя вписать окружность. Что и требовалось доказать.

Если в четырехугольник можно вписать окружность то биссектрисы его углов пересекаются в одной точке

Если же в четырехугольник можно вписать окружность, то его стороны обладают следующим замечательным свойством:

В любом описанном четырехугольнике суммы противоположных сторон равны.

Доказательство

Рассмотрим четырехугольник АВСD, описанный около окружности (Рис. 4).

Если в четырехугольник можно вписать окружность то биссектрисы его углов пересекаются в одной точке

На рисунке 4 одинаковыми буквами обозначены равные отрезки касательных, т.к. отрезки касательных к окружности, проведенные из одной точки, равны. Тогда АВ + СD = Если в четырехугольник можно вписать окружность то биссектрисы его углов пересекаются в одной точкеи ВС + АD = Если в четырехугольник можно вписать окружность то биссектрисы его углов пересекаются в одной точке, следовательно, АВ + СD = ВС + АD.

Верно и обратное утверждение:

Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

Доказательство

Пусть в выпуклом четырехугольнике АВСD

АВ + СD = ВС + АD. (1)

Точка О пересечения биссектрис углов А и В равноудалена от сторон АD, АВ и ВС (свойство биссектрис), поэтому можно провести окружность с центром О, касающуюся указанных трех сторон (Рис. 5).

Если в четырехугольник можно вписать окружность то биссектрисы его углов пересекаются в одной точке

Докажем, что эта окружность касается также стороны СD и, значит, является вписанной в четырехугольник АВСD.

Предположим, что это не так. Тогда прямая СD либо не имеет общих точек с окружностью, либо является секущей. Рассмотрим первый случай (Рис. 6). Проведем касательную С1D1, параллельную стороне СD (С1 и D1 — точки пересечения касательной со сторонами ВС и АD).

Если в четырехугольник можно вписать окружность то биссектрисы его углов пересекаются в одной точке

Так как АВС1D1 — описанный четырехугольник, то по свойству его противоположных сторон

АВ + С1D1 = ВС1 + AD1. (2)

Но ВС1 = ВСС1С, АD1 = АDD1D, поэтому из равенства (2) получаем:

С1D1 + С1С + D1D = ВС + АDАВ.

Правая часть этого равенства в силу (1) равна СD. Следовательно, приходим к равенству

т.е. в четырехугольник С1СDD1 одна сторона равна сумме трех других сторон. Но этого не может быть, т.к. к аждая сторона четырёхугольника всегда меньше суммы трёх остальных сторон. Значит, наше предположение ошибочно. Аналогично можно доказать, что прямая CD не может быть секущей окружности. Следовательно, окружность касается стороны СD. Что и требовалось доказать.

Поделись с друзьями в социальных сетях:

📹 Видео

Признаки вписанного четырехугольника | Задачи 21-27 | Решение задач | Волчкевич |Уроки геометрии 7-8Скачать

Признаки вписанного четырехугольника | Задачи 21-27 | Решение задач | Волчкевич |Уроки геометрии 7-8

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

24 задание ОГЭ по математике - Геометрия, окружность : ДоказательствоСкачать

24 задание ОГЭ по математике - Геометрия, окружность : Доказательство

Решение задач на окружность явную и вспомогательнуюСкачать

Решение задач на окружность явную и вспомогательную

3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Признаки вписанного четырехугольника | Задачи 35-40 | Решение задач | Волчкевич |Уроки геометрии 7-8Скачать

Признаки вписанного четырехугольника | Задачи 35-40 | Решение задач | Волчкевич |Уроки геометрии 7-8

Условие принадлежности четырёх точек одной окружностиСкачать

Условие принадлежности четырёх точек одной окружности

СЕКРЕТНАЯ "Лемма 255" в №16 из ЕГЭ 2020 по профильной МАТЕМАТИКЕСкачать

СЕКРЕТНАЯ "Лемма 255" в №16 из ЕГЭ 2020 по профильной МАТЕМАТИКЕ

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Все про вписанную и описанную окружность для ЕНТ по математикеСкачать

Все про вписанную и описанную окружность для ЕНТ по математике

Геометрия 10 класс (Урок№2 - Четырехугольники.)Скачать

Геометрия 10 класс (Урок№2 - Четырехугольники.)

Четырехугольники, вписанные в окружность. 9 класс.Скачать

Четырехугольники, вписанные в окружность. 9 класс.

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

8 класс, 4 урок, ПараллелограммСкачать

8 класс, 4 урок, Параллелограмм

11 класс, 44 урок, Описанный четырехугольникСкачать

11 класс, 44 урок, Описанный четырехугольник
Поделиться или сохранить к себе: