Если угол величиной 30 градусов вписан в окружность

Найдите хорду, на которую опирается угол 30

27858. Найдите хорду, на которую опирается угол 30 градусов, вписанный в окружность радиуса 3.

Если угол величиной 30 градусов вписан в окружность

Построим центральный угол АОВ:

Если угол величиной 30 градусов вписан в окружность

Он в два раза больше вписанного, то есть угол АОВ равен 60 градусам. От сюда можно сделать вывод, что треугольник АОВ равносторонний. Таким образом, хорда равна радиусу, то есть трём.

Видео:Задача 6 №27862 ЕГЭ по математике. Урок 105Скачать

Задача 6 №27862 ЕГЭ по математике. Урок 105

Центральные и вписанные углы

Если угол величиной 30 градусов вписан в окружность

О чем эта статья:

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Если угол величиной 30 градусов вписан в окружность

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Если угол величиной 30 градусов вписан в окружность

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:В угол C величиной 83° вписана окружность ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

В угол C величиной 83° вписана окружность ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Если угол величиной 30 градусов вписан в окружность

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Если угол величиной 30 градусов вписан в окружность

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Если угол величиной 30 градусов вписан в окружность

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Если угол величиной 30 градусов вписан в окружность

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Если угол величиной 30 градусов вписан в окружность

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Если угол величиной 30 градусов вписан в окружность

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Если угол величиной 30 градусов вписан в окружность

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Если угол величиной 30 градусов вписан в окружность

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Если угол величиной 30 градусов вписан в окружность

ㄥBAC + ㄥBDC = 180°

Видео:🔴 В угол C, равный 165°, вписана окружность с ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРАСкачать

🔴 В угол C, равный 165°, вписана окружность с ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРА

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Если угол величиной 30 градусов вписан в окружность

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Если угол величиной 30 градусов вписан в окружность

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Если угол величиной 30 градусов вписан в окружность

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

Видео:В окружности проведены диаметры AD и BC, угол OCD равен 30°. Найдите величину угла OAB.Скачать

В окружности проведены диаметры AD и BC, угол OCD равен 30°. Найдите величину угла OAB.

Углы, связанные с окружностью

Если угол величиной 30 градусов вписан в окружностьВписанные и центральные углы
Если угол величиной 30 градусов вписан в окружностьУглы, образованные хордами, касательными и секущими
Если угол величиной 30 градусов вписан в окружностьДоказательства теорем об углах, связанных с окружностью

Видео:Видео урок / Геометрия: В угол величиной 70 градусов вписана окружность, которая касается его сторонСкачать

Видео урок / Геометрия: В угол величиной 70 градусов вписана окружность, которая касается его сторон

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Если угол величиной 30 градусов вписан в окружность

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Если угол величиной 30 градусов вписан в окружность

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:ОГЭ по математике. Треугольник вписан в окружность . (Вар. 4) √ 17 модуль геометрия ОГЭСкачать

ОГЭ по математике. Треугольник вписан в окружность . (Вар. 4) √ 17 модуль геометрия ОГЭ

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголЕсли угол величиной 30 градусов вписан в окружность
Вписанный уголЕсли угол величиной 30 градусов вписан в окружностьВписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголЕсли угол величиной 30 градусов вписан в окружностьВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголЕсли угол величиной 30 градусов вписан в окружностьДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголЕсли угол величиной 30 градусов вписан в окружностьВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаЕсли угол величиной 30 градусов вписан в окружность

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Если угол величиной 30 градусов вписан в окружность

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Если угол величиной 30 градусов вписан в окружность

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Если угол величиной 30 градусов вписан в окружность

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Если угол величиной 30 градусов вписан в окружность

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Если угол величиной 30 градусов вписан в окружность

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Если угол величиной 30 градусов вписан в окружность

Видео:7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»Скачать

7 кл г. Теорема: «катет лежавший напротив угла в 30 градусов равен половине гипотенузы»

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиЕсли угол величиной 30 градусов вписан в окружностьЕсли угол величиной 30 градусов вписан в окружность
Угол, образованный секущими, которые пересекаются вне кругаЕсли угол величиной 30 градусов вписан в окружностьЕсли угол величиной 30 градусов вписан в окружность
Угол, образованный касательной и хордой, проходящей через точку касанияЕсли угол величиной 30 градусов вписан в окружностьЕсли угол величиной 30 градусов вписан в окружность
Угол, образованный касательной и секущейЕсли угол величиной 30 градусов вписан в окружностьЕсли угол величиной 30 градусов вписан в окружность
Угол, образованный двумя касательными к окружностиЕсли угол величиной 30 градусов вписан в окружностьЕсли угол величиной 30 градусов вписан в окружность

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Если угол величиной 30 градусов вписан в окружность

Если угол величиной 30 градусов вписан в окружность

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Если угол величиной 30 градусов вписан в окружность

Если угол величиной 30 градусов вписан в окружность

Если угол величиной 30 градусов вписан в окружность

Если угол величиной 30 градусов вписан в окружность

Угол, образованный пересекающимися хордами хордами
Если угол величиной 30 градусов вписан в окружность
Формула: Если угол величиной 30 градусов вписан в окружность
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Если угол величиной 30 градусов вписан в окружность

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Если угол величиной 30 градусов вписан в окружность
Формула: Если угол величиной 30 градусов вписан в окружность
Угол, образованный касательной и секущей касательной и секущей
Формула: Если угол величиной 30 градусов вписан в окружность

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Если угол величиной 30 градусов вписан в окружность

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:№655. Центральный угол АОВ на 30° больше вписанного угла, опирающегося на дугу АВ. НайдитеСкачать

№655. Центральный угол АОВ на 30° больше вписанного угла, опирающегося на дугу АВ. Найдите

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Если угол величиной 30 градусов вписан в окружность

Если угол величиной 30 градусов вписан в окружность

Если угол величиной 30 градусов вписан в окружность

Если угол величиной 30 градусов вписан в окружность

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Если угол величиной 30 градусов вписан в окружность

В этом случае справедливы равенства

Если угол величиной 30 градусов вписан в окружность

Если угол величиной 30 градусов вписан в окружность

Если угол величиной 30 градусов вписан в окружность

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Если угол величиной 30 градусов вписан в окружность

В этом случае справедливы равенства

Если угол величиной 30 градусов вписан в окружность

Если угол величиной 30 градусов вписан в окружность

Если угол величиной 30 градусов вписан в окружность

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Если угол величиной 30 градусов вписан в окружность

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Если угол величиной 30 градусов вписан в окружность

Если угол величиной 30 градусов вписан в окружность

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Если угол величиной 30 градусов вписан в окружность

Если угол величиной 30 градусов вписан в окружность

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Если угол величиной 30 градусов вписан в окружность

Если угол величиной 30 градусов вписан в окружность

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Если угол величиной 30 градусов вписан в окружность

Если угол величиной 30 градусов вписан в окружность

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Если угол величиной 30 градусов вписан в окружность

Если угол величиной 30 градусов вписан в окружность

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Если угол величиной 30 градусов вписан в окружность

Если угол величиной 30 градусов вписан в окружность

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Если угол величиной 30 градусов вписан в окружность

Если угол величиной 30 градусов вписан в окружность

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Если угол величиной 30 градусов вписан в окружность

Если угол величиной 30 градусов вписан в окружность

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

🎥 Видео

Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Угол, вписанный в окружность. Решение задач. Часть 1. Геометрия 8-9 классСкачать

Угол, вписанный в окружность. Решение задач. Часть 1. Геометрия 8-9 класс

#2_Самое сложное задание 16 ОГЭ 2021. Задачи по геометрии. Вписанные и центральные углы.Скачать

#2_Самое сложное задание 16 ОГЭ 2021. Задачи по геометрии. Вписанные и центральные углы.

Треугольник ABC вписан в окружность с центром O Угол BAC равен 32°Скачать

Треугольник ABC вписан в окружность с центром O  Угол BAC равен 32°

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

Вписанные углы | Задачи 21-30 | Решение задач | Волчкевич | Уроки геометрии 7-8 классыСкачать

Вписанные углы | Задачи 21-30 | Решение задач | Волчкевич | Уроки геометрии 7-8 классы

В окружности с центром в точке О проведены диаметры AD и BC, угол OCD равен 30°.ОГЭ МатематикаСкачать

В окружности с центром в точке О проведены диаметры AD и BC, угол OCD равен 30°.ОГЭ Математика

Четырёхугольник ABCD вписан в окружность ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Четырёхугольник ABCD вписан в окружность ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

Вписанные и центральные углы #огэ #огэматематика #математикаСкачать

Вписанные и центральные углы #огэ #огэматематика #математика

Вписанный угол, который опирается на диаметрСкачать

Вписанный угол, который опирается на диаметр

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика
Поделиться или сохранить к себе: