Если суммы противолежащих сторон равны то четырехугольник

Описанные четырехугольники

Определение 1 . Окружностью, вписанной в четырёхугольник, называют окружность, которая касается касается каждой из сторон четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, описанным около окружности или описанным четырёхугольником .

Если суммы противолежащих сторон равны то четырехугольник

Замечание . В настоящем разделе мы рассматриваем только выпуклые четырёхугольники.

Теорема 1 . Если четырёхугольник описан около окружности, то суммы длин его противоположных сторон равны.

Доказательство . Рассмотрим четырёхугольник ABCD , описанный около окружности, и обозначим буквами E, F, G, H – точки касания сторон четырёхугольника с окружностью (рис.2).

Если суммы противолежащих сторон равны то четырехугольник

AH = AE, BF = BE, CF = CG, DH = DG,

Складывая эти равенства, получим:

AH + BF + CF + DH =
= AD + BC,
AE + BE + CG + DG =
= AB + CD,

то справедливо равенство

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1) . Если у четырёхугольника суммы длин противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Доказательство . Рассмотрим четырёхугольник ABCD , длины сторон которого удовлетворяют равенству

и проведём биссектрисы углов BAD и CDA . Обозначим точку пересечения этих биссектрис буквой O , и опустим из точки O перпендикуляры OH, OE и OG на стороны AD, AB и CD соответственно (рис.3).

Если суммы противолежащих сторон равны то четырехугольник

Следовательно, справедливы равенства

из которых вытекает, что точки H, E и G лежат на окружности с центром в точке O и радиусом OH , касающейся сторон четырёхугольника AD, AB и CD в точках H, E и G соответственно. При этом возможны два случая:

Окружность касается касается стороны BC (рис.4).

Если суммы противолежащих сторон равны то четырехугольник

В этом случае четырёхугольник ABCD описан около окружности, и теорема доказана.

Окружность не касается стороны BC .

В этом случае касательная, проведенная к окружности из точки B , пересекает прямую DC в точке K , и возможны два случая:

    Точка K лежит между точками C и D (рис.5)

Если суммы противолежащих сторон равны то четырехугольник

Если суммы противолежащих сторон равны то четырехугольник

Рассмотрим случай 2а и приведём его к противоречию. В этом случае в силу того, что четырёхугольник ABKD является описанным, а также по условию теоремы справедливы равенства:

Если суммы противолежащих сторон равны то четырехугольник

Если суммы противолежащих сторон равны то четырехугольник

Последнее равенство утверждает, что в треугольнике BKC сумма двух сторон равна третьей стороне, что противоречит неравенству треугольника неравенству треугольника неравенству треугольника . Полученное противоречие доказывает, что случай 2а невозможен.

Совершенно аналогичные рассуждения позволяют заключить, что случай 2b также невозможен.

Итак, возможен и реализуется лишь случай 1.

Из доказательства теоремы 2 непосредственно вытекает

Теорема 3 . Биссектрисы всех внутренних углов описанного четырёхугольника пересекаются в одной точке – центре вписанной окружности.

В следующей таблице приводятся примеры четырёхугольников, в которые можно вписать окружность. Доказательства утверждений непосредственно вытекают из теорем 1 и 2 и предоставляются читателю в качестве несложных упражнений.

Примеры описанных четырёхугольников

ФигураРисунокУтверждение
РомбЕсли суммы противолежащих сторон равны то четырехугольникВ любой ромб можно вписать окружность
КвадратЕсли суммы противолежащих сторон равны то четырехугольникВ любой квадрат можно вписать окружность
ПрямоугольникЕсли суммы противолежащих сторон равны то четырехугольникВ прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом
ПараллелограммЕсли суммы противолежащих сторон равны то четырехугольникВ параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом
ДельтоидЕсли суммы противолежащих сторон равны то четырехугольникВ любой дельтоид можно вписать окружность
ТрапецияЕсли суммы противолежащих сторон равны то четырехугольникВ трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований
Ромб
Если суммы противолежащих сторон равны то четырехугольник
КвадратЕсли суммы противолежащих сторон равны то четырехугольник

В любой квадрат можно вписать окружность

ПрямоугольникЕсли суммы противолежащих сторон равны то четырехугольник

В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом

ПараллелограммЕсли суммы противолежащих сторон равны то четырехугольник

В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом

ДельтоидЕсли суммы противолежащих сторон равны то четырехугольник

ТрапецияЕсли суммы противолежащих сторон равны то четырехугольник

В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований

Видео:Геометрия Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можноСкачать

Геометрия Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можно

Вписанная окружность

Окружность вписанная в многоугольник — это окружность, которая касается всех сторон многоугольника. Центр вписанной окружности лежит внутри многоугольника, в который она вписана. Описанный около окружности многоугольник — это многоугольник, в который вписана окружность. На рисунке 1 четырехугольник АВСD описан около окружности с центром О, а четырехугольник АЕКD не является описанным около этой окружности, так как сторона ЕК не касается окружности.

Если суммы противолежащих сторон равны то четырехугольник

Теорема

В любой треугольник можно вписать окружность.

Доказательство

Дано: произвольный Если суммы противолежащих сторон равны то четырехугольникАВС.

Доказать: в Если суммы противолежащих сторон равны то четырехугольникАВС можно вписать окружность.

Доказательство:

1. Проведем биссектрисы углов А, В и С, которые пересекутся в точке О (следствие из свойства биссектрис). Из точки О проведем перпендикуляры ОК, ОL и ОМ соответственно к сторонам АВ, ВС и СА (Рис. 2).

Если суммы противолежащих сторон равны то четырехугольник

2. Точка О равноудалена от сторон Если суммы противолежащих сторон равны то четырехугольникАВС (свойство биссектрис), поэтому ОК = ОL = ОМ. Следовательно, окружность с центром О радиуса ОК проходит через точки К, L и М. Стороны Если суммы противолежащих сторон равны то четырехугольникАВС касаются этой окружности в точках К, L, М, т.к. они перпендикулярны к радиусам ОК, ОL и ОМ. Значит, окружность с центром О радиуса ОК является вписанной в Если суммы противолежащих сторон равны то четырехугольникАВС. Теорема доказана.

Замечание 1

В треугольник можно вписать только одну окружность.

Доказательство

Предположим, что в треугольник можно вписать две окружности. Тогда центр каждой окружности равноудален от сторон треугольника и, значит, совпадает с точкой О пересечения биссектрис треугольника, а радиус равен расстоянию от точки О до сторон треугольника. Следовательно, эти окружности совпадают, значит в треугольник можно вписать только одну окружность. Что и требовалось доказать.

Замечание 2

Площадь треугольника равна произведению его полупериметра на радиус вписанной в него окружности.

Доказательство

На рисунке 2 мы видим, что Если суммы противолежащих сторон равны то четырехугольникАВС составлен из трех треугольников: АВО, ВСО и САО. Пусть АВ, ВС и АС основания треугольников АВО, ВСО и САО соответственно, тогда высотами данных треугольников окажутся отрезки ОК = ОL = ОМ = r ( r — радиус окружности с центром О). Следовательно, площади этих треугольников вычисляются по формулам: Если суммы противолежащих сторон равны то четырехугольник. Тогда, по свойству площадей, площадь треугольника Если суммы противолежащих сторон равны то четырехугольникАВС выражается формулой: Если суммы противолежащих сторон равны то четырехугольник, где Если суммы противолежащих сторон равны то четырехугольник— периметр Если суммы противолежащих сторон равны то четырехугольникАВС. Что и требовалось доказать.

Замечание 3

Не во всякий четырехугольник можно вписать окружность.

Доказательство

Рассмотрим, например, прямоугольник, у которого смежные стороны не равны, т.е. прямоугольник, не являющийся квадратом. В такой прямоугольник можно «поместить» окружность, касающуюся трех его сторон (Рис.3), но нельзя «поместить» окружность так, чтобы она касалась всех четырех его сторон, т.к. диаметр окружности меньше большей стороны прямоугольника т.е. нельзя вписать окружность. Что и требовалось доказать.

Если суммы противолежащих сторон равны то четырехугольник

Если же в четырехугольник можно вписать окружность, то его стороны обладают следующим замечательным свойством:

В любом описанном четырехугольнике суммы противоположных сторон равны.

Доказательство

Рассмотрим четырехугольник АВСD, описанный около окружности (Рис. 4).

Если суммы противолежащих сторон равны то четырехугольник

На рисунке 4 одинаковыми буквами обозначены равные отрезки касательных, т.к. отрезки касательных к окружности, проведенные из одной точки, равны. Тогда АВ + СD = Если суммы противолежащих сторон равны то четырехугольники ВС + АD = Если суммы противолежащих сторон равны то четырехугольник, следовательно, АВ + СD = ВС + АD.

Верно и обратное утверждение:

Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

Доказательство

Пусть в выпуклом четырехугольнике АВСD

АВ + СD = ВС + АD. (1)

Точка О пересечения биссектрис углов А и В равноудалена от сторон АD, АВ и ВС (свойство биссектрис), поэтому можно провести окружность с центром О, касающуюся указанных трех сторон (Рис. 5).

Если суммы противолежащих сторон равны то четырехугольник

Докажем, что эта окружность касается также стороны СD и, значит, является вписанной в четырехугольник АВСD.

Предположим, что это не так. Тогда прямая СD либо не имеет общих точек с окружностью, либо является секущей. Рассмотрим первый случай (Рис. 6). Проведем касательную С1D1, параллельную стороне СD (С1 и D1 — точки пересечения касательной со сторонами ВС и АD).

Если суммы противолежащих сторон равны то четырехугольник

Так как АВС1D1 — описанный четырехугольник, то по свойству его противоположных сторон

АВ + С1D1 = ВС1 + AD1. (2)

Но ВС1 = ВСС1С, АD1 = АDD1D, поэтому из равенства (2) получаем:

С1D1 + С1С + D1D = ВС + АDАВ.

Правая часть этого равенства в силу (1) равна СD. Следовательно, приходим к равенству

т.е. в четырехугольник С1СDD1 одна сторона равна сумме трех других сторон. Но этого не может быть, т.к. к аждая сторона четырёхугольника всегда меньше суммы трёх остальных сторон. Значит, наше предположение ошибочно. Аналогично можно доказать, что прямая CD не может быть секущей окружности. Следовательно, окружность касается стороны СD. Что и требовалось доказать.

Поделись с друзьями в социальных сетях:

Видео:Геометрия Признак параллелограмма: Если в четырех угольнике каждые две противолежащие стороны равныСкачать

Геометрия Признак параллелограмма: Если в четырех угольнике каждые две противолежащие стороны равны

Многоугольник. Свойства четырехугольников описанных около окружности.

Если все стороны какого-нибудь многоугольника (MNPQ) касаются окружности, то говорят, что этот многоугольник описан около окружности, или что окружность вписана в него.

Если суммы противолежащих сторон равны то четырехугольник

Теорема.

В описанном выпуклом четырехугольнике суммы противоположных сторон равны.

Пусть ABCD будет описанный выпуклый четырехугольник, т.е. стороны его касаются окружности. Требуется доказать, что AB + CD = BC + AD.

Обратная теорема.

Если в выпуклом четырехугольнике равны суммы противоположных сторон, то в него можно вписать окружность.

Требуется доказать, что в него можно вписать окружность.

Пусть ABCD такой выпуклый четырехугольник, в котором: AB + CD = AD + BC.

📺 Видео

Геометрия Признак параллелограмма: Если в четырехугольнике противолежащие стороны равныСкачать

Геометрия Признак параллелограмма: Если в четырехугольнике противолежащие стороны равны

8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Описанный четырехугольникСкачать

Описанный четырехугольник

Признак параллелограмма (если в четырехугольнике две стороны равны и параллельны, тоСкачать

Признак параллелограмма (если в четырехугольнике две стороны равны и параллельны, то

3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Геометрия Если четырехугольник является описанным около окружности, то суммы его противолежащихСкачать

Геометрия Если четырехугольник является описанным около окружности, то суммы его противолежащих

Геометрия Если четырехугольник является вписанным в окружность, то сумма его противолежащих угловСкачать

Геометрия Если четырехугольник является вписанным в окружность, то сумма его противолежащих углов

№695. Сумма двух противоположных сторон описанного четырехугольника равна 15 см. НайдитеСкачать

№695. Сумма двух противоположных сторон описанного четырехугольника равна 15 см. Найдите

8 класс, 4 урок, ПараллелограммСкачать

8 класс, 4 урок, Параллелограмм

Геометрия Если в четырехугольнике сумма противолежащих углов равна 180, то около него можно описатьСкачать

Геометрия Если в четырехугольнике сумма противолежащих углов равна 180, то около него можно описать

Если в четырёхугольник можно вписать окружностьСкачать

Если в четырёхугольник можно вписать окружность

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

11 класс, 44 урок, Описанный четырехугольникСкачать

11 класс, 44 урок, Описанный четырехугольник

ГЕОМЕТРИЯ ОГЭ ЕГЭ. ЧЕТЫРЕХУГОЛЬНИКИ ВПИСАННЫЕ И ОПИСАННЫЕСкачать

ГЕОМЕТРИЯ ОГЭ ЕГЭ. ЧЕТЫРЕХУГОЛЬНИКИ ВПИСАННЫЕ И ОПИСАННЫЕ

2 ПРАВИЛА описанного четырехугольника #shortsСкачать

2 ПРАВИЛА описанного четырехугольника #shorts

8 класс, 38 урок, Вписанная окружностьСкачать

8 класс, 38 урок, Вписанная окружность

№698. Сумма двух противоположных сторон описанного четырехугольника равна 12 см, а радиусСкачать

№698. Сумма двух противоположных сторон описанного четырехугольника равна 12 см, а радиус

Противоположные стороны параллелограмма равны 8 клСкачать

Противоположные стороны параллелограмма равны 8 кл
Поделиться или сохранить к себе: