Какое из следующих утверждений верно?
1) Если расстояние между центрами двух окружностей равно сумме их диаметров, то эти окружности касаются.
2) Вписанные углы окружности равны.
3) Если вписанный угол равен 30°, то дуга окружности, на которую опирается этот угол, равна 60°.
4) Через любые четыре точки, не принадлежащие одной прямой, проходит единственная окружность.
Проверим каждое из утверждений.
1) «Если расстояние между центрами двух окружностей равно сумме их диаметров, то эти окружности касаются.» — неверно, если расстояние между центрами двух окружностей равно сумме их радиусов, то эти окружности касаются.
2) «Вписанные углы окружности равны.» — неверно, угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным углом. Они равны тогда, когда опираются на одну и ту же дугу.
3) «Если вписанный угол равен 30°, то дуга окружности, на которую опирается этот угол, равна 60°.» — верно, вписанный угол измеряется половиной дуги, на которую он опирается.
4) «Через любые четыре точки, не принадлежащие одной прямой, проходит единственная окружность.» — неверно, некоторые точки могут не попасть на окружность.
- Окружность. Относительное взаимоположение окружностей.
- Две окружности на плоскости. Общие касательные к двум окружностям
- Взаимное расположение двух окружностей
- Формулы для длин общих касательных и общей хорды двух окружностей
- Доказательства формул для длин общих касательных и общей хорды двух окружностей
- 📽️ Видео
Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать
Окружность. Относительное взаимоположение окружностей.
Если две окружности имеют только одну общую точку, то говорят, что они касаются.
Если же две окружности имеют две общие точки, то говорят, что они пересекаются.
Трех общих точек две не сливающиеся окружности иметь не могут, потому, что в противном случае через три точки можно было бы провести две различные окружности, что невозможно.
Будем называть линией центров прямую, проходящую через центры двух окружностей (например, прямую OO1).
Теорема.
Если две окружности имеют общую точку по одну сторону от линии центров, то они имеют общую точку и по другую сторону от этой линии, т.е. такие окружности пересекаются.
Пусть окружности O и O1 имеют общую точку A, лежащую вне линии центров OO1. Требуется доказать, что эти окружности имеют еще общую точку по другую сторону от прямой OO1.
Опустим из A на прямую OO1 перпендикуляр AB и продолжим его на расстояние BA1, равное AB. Докажем теперь, что точка A1 принадлежит обеим окружностям. Из построения видно, что точки O и O1 лежат на перпендикуляре, проведенном к отрезку AA1 через его середину. Из этого следует, что точка O одинаково удалена от A и A1. То же можно сказать и о точке O1. Значит обе окружности, при продолжении их, пройдут через A1.Таким образом, окружности имеют две общие точки : A (по условию) и A1 (по доказанному). Следовательно, они пересекаются.
Следствие.
Общая хорда (AA1) двух пересекающихся окружностей перпендикулярна к линии центров и делится ею пополам.
Теоремы.
1. Если две окружности имеют общую точку на линии их центров или на ее продолжении, то они касаются.
2. Обратно: если две окружности касаются, то общая их точка лежит на линии центров или на ее продолжении.
Признаки различных случаев относительного положения окружностей.
Пусть имеем две окружности с центрами O и O1, радиусами R и R1 и расстоянием между центрами d.
Эти окружности могут находиться в следующих 5-ти относительных положениях:
1. Окружности лежат одна вне другой, не касаясь. В этом случае, очевидно, d > R + R1 .
2. Окружности имеют внешнее касание. Тогда d = R + R1, так как точка касания лежит на линии центров O O1.
3. Окружности пересекаются. Тогда d R + R1, потому что в треугольнике OAO1 сторона OO1 меньше суммы, но больше разности двух других сторон.
4. Окружности имеют внутреннее касание. В этом случае в d = R — R1, потому что точка касания лежит на продолжении линии OO1.
5. Одна окружность лежит внутри другой, не касаясь. Тогда, очевидно,
d R + R1, то окружности расположены одна вне другой, не касаясь.
2. Если d = R + R1, то окружности касаются извне.
3. Если d R — R1, то окружности пересекаются.
4. Если d = R — R1, то окружности касаются изнутри.
5. Если d R Е R1. Значит, все эти случаи исключаются. Остается один возможный, именно тот, который требовалось доказать. Таким образом, перечисленные признаки различных случаев относительно положения двух окружностей не только необходимы, но и достаточны.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Две окружности на плоскости.
Общие касательные к двум окружностям
Взаимное расположение двух окружностей |
Общие касательные к двум окружностям |
Формулы для длин общих касательных и общей хорды |
Доказательства формул для длин общих касательных и общей хорды |
Видео:"Парадоксальное" среднее расстояние между точками на окружностиСкачать
Взаимное расположение двух окружностей
Фигура | Рисунок | Свойства |
Две окружности на плоскости | ||
Каждая из окружностей лежит вне другой | ||
Внешнее касание двух окружностей | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Каждая из окружностей лежит вне другой | ||
Внешнее касание двух окружностей | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Каждая из окружностей лежит вне другой | ||
Расстояние между центрами окружностей больше суммы их радиусов | ||
Внешнее касание двух окружностей | ||
Расстояние между центрами окружностей равно сумме их радиусов | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Расстояние между центрами окружностей больше разности их радиусов, но меньше суммы их радиусов r1 – r2 лежит внутри другой | ||
Внутренняя касательная к двум окружностям | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Внешнее касание двух окружностей | ||
Внешняя касательная к двум окружностям | |
Внутренняя касательная к двум окружностям | |
Внутреннее касание двух окружностей | |
Окружности пересекаются в двух точках | |
Внешнее касание двух окружностей | |
Каждая из окружностей лежит вне другой | |
Внешняя касательная к двум окружностям | |||||||||||||||||||||
Внутренняя касательная к двум окружностям | |||||||||||||||||||||
Внутреннее касание двух окружностей | |||||||||||||||||||||
Окружности пересекаются в двух точках | |||||||||||||||||||||
Внешнее касание двух окружностей | |||||||||||||||||||||
Каждая из окружностей лежит вне другой | |||||||||||||||||||||
Фигура | Рисунок | Формула | ||||||||||||
Внешняя касательная к двум окружностям | ||||||||||||||
Внутренняя касательная к двум окружностям | ||||||||||||||
Общая хорда двух пересекающихся окружностей |
Внешняя касательная к двум окружностям | ||||
Внутренняя касательная к двум окружностям | ||||
Общая хорда двух пересекающихся окружностей | ||||
Внешняя касательная к двум окружностям |
Внутренняя касательная к двум окружностям |
Общая хорда двух пересекающихся окружностей |
Длина общей хорды двух окружностей вычисляется по формуле Видео:Решение задач на тему центральные и вписанные углы.Скачать Доказательства формул для длин общих касательных и общей хорды двух окружностейУтверждение 1 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d (рис.1), то длина общей внешней касательной к этим окружностям вычисляется по формуле что и требовалось доказать. Утверждение 2 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d , то длина общей внутренней касательной к этим окружностям вычисляется по формуле что и требовалось доказать. Утверждение 3 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d , то длина общей хорды AB этих окружностей вычисляется по формуле Доказательство . Для того, чтобы найти длину общей хорды AB двух окружностей, введём, как показано на рисунке 3, 📽️ ВидеоПланиметрия 11 |mathus.ru| расстояние между центрами пересекающихся окружностейСкачать Углы, вписанные в окружность. 9 класс.Скачать Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |Скачать Взаимное расположение двух окружностей. Урок 8. Геометрия 9 классСкачать ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать Расстояние между точкамиСкачать 9 класс, 8 урок, Взаимное расположение двух окружностейСкачать Планиметрия 12 | mathus.ru | расстояние между центрами пересекающихся окружностейСкачать Геометрия 9 класс (Урок№10 - Взаимное расположение двух окружностей.)Скачать Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать Уравнение окружности и формула расстояния между точками на плоскостиСкачать Занятие 7. Окружность. Центральные и вписанные углы. Планиметрия для ЕГЭ и ОГЭСкачать Расстояние между центрами вписанной и описанной окружностей треугольника и их радиусами #ShortsСкачать Урок 2. Центральные и вписанные углы. Окружность| Решение задачСкачать Расстояние между точками по координатам.Скачать |