Если два угла четырехугольника равны 90 то этот четырехугольник

Признаки прямоугольника

Если два угла четырехугольника равны 90 то этот четырехугольник Если два угла четырехугольника равны 90 то этот четырехугольник

Средняя оценка: 4.6

Всего получено оценок: 206.

Средняя оценка: 4.6

Всего получено оценок: 206.

В этой статье мы поговорим о признаках прямоугольника. Выделим основные и рассмотри каждый в отдельности.

Видео:Красивая задача про углы четырехугольникаСкачать

Красивая задача про углы четырехугольника

Определения

Основная часть доказательств основывается на том, что в четырехугольнике сумма углов равна 360 градусам.

Всего насчитывается 7 признаков прямоугольника. Для того, чтобы их применять нужно, прежде всего, вспомнить определения:

Прямоугольник это параллелограмм, у которого все углы прямые.

Параллелограмм это выпуклый четырехугольник, у которого все стороны попарно равны и параллельны.

Для того, чтобы определить выпуклый четырехугольник или нет нужно последовательно проводить через каждую из сторон фигуры линию. Если в каждом из 4 случаев (поскольку сторон 4) вся фигура будет оставаться по одну сторону от линии, то четырехугольник выпуклый.

Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Признаки

Перед нами параллелограмм. Как доказать, что он является прямоугольником? Воспользоваться одним из признаков:

  • Параллелограмм является прямоугольником, если один из углов – прямой.

В параллелограмме противоположные углы равны. Значит, если один из углов – прямой, то противоположный ему угол так же прямой, а два оставшихся равны между собой. Сумма всех углов четырехугольника 360 градусов.

Два угла прямые, значит остается 360-90*2=180. Эта сумма двух равных углов, значит, каждый из оставшихся углов прямой: 180/2=90. Если все углы параллелограмма прямые, то это прямоугольник.

Этот признак работает только для параллелограммов. В случае с четырехугольниками прямой угол может быть и у прямоугольной трапеции.

Для того, чтобы вокруг четырехугольника описать окружность, необходимо, чтобы противоположные углы в сумме давали 180 градусов. Противоположные углы в параллелограмме равны, значит 180/2=90 градусов составляет каждый угол. Значит это прямоугольник.

Это существенные признаки прямоугольников. Существуют так же дополнительные, которые сводятся к уже перечисленным. И главное, помните, что в математике важны определения. Признаки прямоугольного прямоугольника – неправильная формулировка. Прямоугольник всегда был, есть и будет прямоугольным.

Если два угла четырехугольника равны 90 то этот четырехугольник

Видео:8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Что мы узнали?

Мы разобрались как можно доказать, что параллелограмм или четырехугольник является параллелограммом, вспомнили некоторые определения и ознакомились с ведущим методом определения прямоугольника – по углам.

Видео:Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать

Что такое угол? Виды углов: прямой, острый, тупой,  развернутый угол

Если два угла четырехугольника равны 90 градусам, то этот четырехугольник является прямоугольником?

Если два угла четырехугольника равны 90 то этот четырехугольник

Если два угла четырехугольника равны 90 то этот четырехугольник

да четырёхугольник является прямоугольником то есть все углы прямые))

Видео:№424. Докажите, что если не все углы выпуклого четырехугольника равны друг другуСкачать

№424. Докажите, что если не все углы выпуклого четырехугольника равны друг другу

Другие вопросы из категории

h= 7 см
S боковой ?
S 2-ух днищ ?

Видео:Четырёхугольники №17 из ОГЭ. Биссектриса и прямоугольные треугольники в четырёхугольниках.Скачать

Четырёхугольники №17 из ОГЭ. Биссектриса и прямоугольные треугольники в четырёхугольниках.

Читайте также

2) Сумма двух противоположный углов параллелограмма равна 180 градусов?
3) Сумма двух противоположный углов четырехугольника равна 180 градусов?
4) Сумма углов выпуклого четырехугольника равна 360 градусов?

1) может быть параллелограммом, а может и не быть
2) не существует
3) не может быть параллелограммом.
4) должен быть паралллелограммом.
5) имеет хотя бы один прямой угол.

Пожалуйста, с пояснением.

параллельны. 2) Если при пересечении двух прямых третьей сумма внутренних односторонних углов равна 180 градусов, то прямые перпендикулярны. 3) Если две перпендикулярные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны.

2.Сколько в треугольнике может быть тупых прямых,острых углов?.
3.Высота прямоугольного треуголька опущенная из вершины прямого угла делит как на два угла отношение которых равно 1:4 .Найдите острые углы треугольника
4.Найдите острый угол между высотами равностороннего треугольника.
5.В окружности проведены диаметр АВ и хорды ВС и АС, 6.Две стороны равнобедренного треугольника равны 5 и 7 см..Найдите пример треугольника,если угол при вершине а)Больше угла при основании;б)Меньше угла при основании.

2)
Если угол меньше прямого угла, то он является острым углом. Является ли это утверждение теоремой?
Помогите плиз

Видео:№400. Докажите, что если в четырехугольнике все углы прямые, то четырехугольник — прямоугольник.Скачать

№400. Докажите, что если в четырехугольнике все углы прямые, то четырехугольник — прямоугольник.

Четырехугольники

теория по математике 📈 планиметрия

Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.

Выпуклый четырехугольник

Четырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD.

Если два угла четырехугольника равны 90 то этот четырехугольникОпределение

Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD.Если два угла четырехугольника равны 90 то этот четырехугольник

Видео:9 класс. Геометрия. ОГЭ. Окружность. Четырехугольники.Скачать

9 класс. Геометрия. ОГЭ. Окружность. Четырехугольники.

Виды и свойства выпуклых четырехугольников

Сумма углов выпуклого четырехугольника равна 360 градусов.

Прямоугольник

Прямоугольник – это четырехугольник, у которого все углы прямые.

Если два угла четырехугольника равны 90 то этот четырехугольникНа рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь Если два угла четырехугольника равны 90 то этот четырехугольник

  1. Противоположные стороны прямоугольника равны (АВ=CD, ВС=АD).
  2. Диагонали прямоугольника равны (АС=ВD).
  3. Диагонали пересекаются и точкой пересечения делятся пополам.
  4. Периметр прямоугольника – это сумма длин всех сторон: Р=(а + b) × 2, где а и b соседние (смежные) стороны прямоугольника
  5. Площадь прямоугольника – это произведение длин соседних (смежных) сторон, формула для нахождения площади прямоугольника:

S=ab, где a и b соседние стороны прямоугольника.

Квадрат

Квадрат – это прямоугольник, у которого все стороны равны.

Если два угла четырехугольника равны 90 то этот четырехугольникСвойства квадрата

  1. Диагонали квадрата равны (BD=AC).
  2. Диагонали квадрата пересекаются под углом 90 градусов.
  3. Диагонали квадрата точкой пересечения делятся пополам (BO=OD, AO=OC).
  4. Периметр квадрата – это сумма длин всех сторон. Так как все стороны квадрата равны, то его можно найти по формуле Р=4×а, где а — длина стороны квадрата.
  5. Площадь квадрата – это произведение длин соседних сторон, формула для нахождения площади прямоугольника S=a 2 , где a — длина стороны квадрата.

Если два угла четырехугольника равны 90 то этот четырехугольник

Параллелограмм

Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.

Если два угла четырехугольника равны 90 то этот четырехугольник

Ромб – это параллелограмм, у которого все стороны равны.

Если два угла четырехугольника равны 90 то этот четырехугольник

Трапеция

Трапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.

Если два угла четырехугольника равны 90 то этот четырехугольник

Виды трапеций

Трапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла.

Если два угла четырехугольника равны 90 то этот четырехугольник

углы А и С равны по 90 градусов

Средняя линия трапеции

Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.

Если два угла четырехугольника равны 90 то этот четырехугольник

Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.

Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.

По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17

Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции.

Если два угла четырехугольника равны 90 то этот четырехугольник

Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов).

Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . .

Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.

Если два угла четырехугольника равны 90 то этот четырехугольник

Для нахождения площади трапеции в справочном материале есть формула

S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63

pазбирался: Даниил Романович | обсудить разбор | оценить

Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.

Если два угла четырехугольника равны 90 то этот четырехугольник

Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.

Если два угла четырехугольника равны 90 то этот четырехугольник

Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 .

Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные:

с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88

pазбирался: Даниил Романович | обсудить разбор | оценить

Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8

Для выполнения данного задания надо подставить все известные данные в формулу:

12,8= d 1 × 16 × 2 5 . . 2 . .

В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . .

Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2

Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4

pазбирался: Даниил Романович | обсудить разбор | оценить

Если два угла четырехугольника равны 90 то этот четырехугольник

На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.

При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.

Задание №1

Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.

Объектыяблонитеплицасарайжилой дом
Цифры

Решение

Для решения 1 задачи работаем с текстом и планом одновременно:

при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.

Итак, получили следующее:

1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.

Заполняем нашу таблицу:

Объектыяблонитеплицасарайжилой дом
Цифры3517

Записываем ответ: 3517

Задание №2

Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?

Решение

Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).

Если два угла четырехугольника равны 90 то этот четырехугольник

Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».

Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.

Задание №3

Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.

Решение

Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.

Если два угла четырехугольника равны 90 то этот четырехугольник

Задание №4

Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.

Решение

Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки).

Если два угла четырехугольника равны 90 то этот четырехугольник

Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м

Задание №5

Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.

Номер магазинаРасход краскиМасса краски в одной банкеСтоимость одной банки краскиСтоимость доставки заказа
10,25 кг/кв.м6 кг3000 руб.500 руб.
20,4 кг/кв.м5 кг1900 руб.800 руб.

Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?

Решение

Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:

1 магазин: 232х0,25=58 кг

2 магазин: 232х0,4=92,8 кг

Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:

1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)

2 магазин: 92,8:5=18,56; значит надо 19 банок.

Вычислим стоимость краски в каждом магазине плюс доставка:

1 магазин: 10х3000+500=30500 руб.

2 магазин: 19х1900+800=36900 руб.

Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

📺 Видео

Задача, которую боятсяСкачать

Задача, которую боятся

Найти периметр четырехугольника, вершины которого лежат на серединах сторон другого четырехугольникаСкачать

Найти периметр четырехугольника, вершины которого лежат на серединах сторон другого четырехугольника

Теперь ты будешь находить углы за секунды. Как найти внешний угол треугольника? #математика #углыСкачать

Теперь ты будешь находить углы за секунды. Как найти внешний угол треугольника? #математика #углы

ОГЭ Задание 25 Доказать что четырехугольник квадратСкачать

ОГЭ Задание 25 Доказать что четырехугольник   квадрат

Все типы 24 задание 2 часть ОГЭ ПО МАТЕМАТИКЕ 2023 УмскулСкачать

Все типы 24 задание 2 часть ОГЭ ПО МАТЕМАТИКЕ 2023 Умскул

Задача первоклассника в 1 шаг! Невероятное решение!Скачать

Задача первоклассника в 1 шаг! Невероятное решение!

Пробелы дистанционного обучения по математике. Свойство вписанного четырёхугольникаСкачать

Пробелы дистанционного обучения по математике. Свойство вписанного четырёхугольника

8 класс, 2 урок, Выпуклый многоугольникСкачать

8 класс, 2 урок, Выпуклый многоугольник

Трапеция. Практическая часть - решение задачи. 8 класс.Скачать

Трапеция. Практическая часть - решение задачи. 8 класс.

ОГЭ 2020 по математике. Вар. 2 Задание 19 и 20.Скачать

ОГЭ 2020 по математике. Вар. 2 Задание 19 и 20.

№369. Найдите углы A, B и C выпуклого четырехугольника ABCD, еслиСкачать

№369. Найдите углы A, B и C выпуклого четырехугольника ABCD, если

Трапеция. Задачи. Найти углы трапеции. Равнобедренной,прямоугольной,Скачать

Трапеция. Задачи. Найти углы трапеции. Равнобедренной,прямоугольной,
Поделиться или сохранить к себе: