Если диагонали четырехугольника равны то прямоугольник

Прямоугольник

Частным видом параллелограмма является прямоугольник.

Прямоугольником называют параллелограмм, у которого все углы прямые

Если диагонали четырехугольника равны то прямоугольник

ABCD — прямоугольник.

Особое свойство прямоугольника

Диагонали прямоугольника равны

Доказательство

Дано: ABCD — прямоугольник

Доказать: AC = DB

Доказательство:

Рассмотрим Если диагонали четырехугольника равны то прямоугольникABD иЕсли диагонали четырехугольника равны то прямоугольникACB: ABCD — прямоугольник, Если диагонали четырехугольника равны то прямоугольникЕсли диагонали четырехугольника равны то прямоугольникА и Если диагонали четырехугольника равны то прямоугольникB — прямые, Если диагонали четырехугольника равны то прямоугольникЕсли диагонали четырехугольника равны то прямоугольникABD иЕсли диагонали четырехугольника равны то прямоугольникACBпрямоугольные. AD = CB (по свойству параллелограмма). AB — общий катет, Если диагонали четырехугольника равны то прямоугольникЕсли диагонали четырехугольника равны то прямоугольникABD =Если диагонали четырехугольника равны то прямоугольникACB (по двум катетам). А в равных треугольниках против соответственно равных углов лежат равные стороны, значит, AC = DB, что и требовалось доказать.

Теорема

Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник

Доказательство

Дано: ABCD — параллелограмм, AC = DB

Доказать: ABCD — прямоугольник

Доказательство:

Рассмотрим Если диагонали четырехугольника равны то прямоугольникABD иЕсли диагонали четырехугольника равны то прямоугольникACB:

AC = DB (по условию), AD = BC (по свойству параллелограмма), AB — общая, Если диагонали четырехугольника равны то прямоугольникЕсли диагонали четырехугольника равны то прямоугольникABD =Если диагонали четырехугольника равны то прямоугольникACB (по трем сторонам). А в равных треугольниках против соответственно равных сторон лежат равные углы, Если диагонали четырехугольника равны то прямоугольникЕсли диагонали четырехугольника равны то прямоугольникA = Если диагонали четырехугольника равны то прямоугольникB. А в параллелограмме противоположные углы равны, значит Если диагонали четырехугольника равны то прямоугольникA = Если диагонали четырехугольника равны то прямоугольникC и Если диагонали четырехугольника равны то прямоугольникВ = Если диагонали четырехугольника равны то прямоугольникD, Если диагонали четырехугольника равны то прямоугольникЕсли диагонали четырехугольника равны то прямоугольникA = Если диагонали четырехугольника равны то прямоугольникВ = Если диагонали четырехугольника равны то прямоугольникC = Если диагонали четырехугольника равны то прямоугольникD (1). Если диагонали четырехугольника равны то прямоугольникA + Если диагонали четырехугольника равны то прямоугольникВ + Если диагонали четырехугольника равны то прямоугольникC + Если диагонали четырехугольника равны то прямоугольникD = 360 0 (2)(т.к. параллелограмм выпуклый четырёхугольник). Следовательно, из (2), учитывая (1), получаем, что Если диагонали четырехугольника равны то прямоугольникA = Если диагонали четырехугольника равны то прямоугольникВ = Если диагонали четырехугольника равны то прямоугольникC = Если диагонали четырехугольника равны то прямоугольникD = 90 0 , Если диагонали четырехугольника равны то прямоугольникABCD — прямоугольник, что и требовалось доказать.

Теорема

Если один из углов параллелограмма прямой, то этот параллелограмм — прямоугольник

Доказательство

Дано: ABCD — параллелограмм, Если диагонали четырехугольника равны то прямоугольникA = 90 0

Доказать: ABCD — прямоугольник

Доказательство:

Если диагонали четырехугольника равны то прямоугольник

Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180 0 , т.е. Если диагонали четырехугольника равны то прямоугольникA + Если диагонали четырехугольника равны то прямоугольникВ = 180 0 , Если диагонали четырехугольника равны то прямоугольникЕсли диагонали четырехугольника равны то прямоугольникВ = 180 0 Если диагонали четырехугольника равны то прямоугольникA = 180 0 90 0 = 90 0

Противолежащие углы параллелограмма равны, Если диагонали четырехугольника равны то прямоугольникЕсли диагонали четырехугольника равны то прямоугольникA = Если диагонали четырехугольника равны то прямоугольникC = 90 0 и Если диагонали четырехугольника равны то прямоугольникВ = Если диагонали четырехугольника равны то прямоугольникD = 90 0

Итак: ABCD — параллелограмм (по условию), и все его углы прямые (по доказанному выше), Если диагонали четырехугольника равны то прямоугольникABCD — прямоугольник (по определению), что и требовалось доказать.

Две теоремы, доказанные выше, называют признаками прямоугольника.

Поделись с друзьями в социальных сетях:

Видео:Если диагонали выпуклого четырёхугольника равны ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Если диагонали выпуклого четырёхугольника равны ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Четырехугольники

теория по математике 📈 планиметрия

Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.

Выпуклый четырехугольник

Четырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD.

Если диагонали четырехугольника равны то прямоугольникОпределение

Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD.Если диагонали четырехугольника равны то прямоугольник

Видео:Диагонали четырехугольника равны 4 и 5.Скачать

Диагонали четырехугольника равны 4 и 5.

Виды и свойства выпуклых четырехугольников

Сумма углов выпуклого четырехугольника равна 360 градусов.

Прямоугольник

Прямоугольник – это четырехугольник, у которого все углы прямые.

Если диагонали четырехугольника равны то прямоугольникНа рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь Если диагонали четырехугольника равны то прямоугольник

  1. Противоположные стороны прямоугольника равны (АВ=CD, ВС=АD).
  2. Диагонали прямоугольника равны (АС=ВD).
  3. Диагонали пересекаются и точкой пересечения делятся пополам.
  4. Периметр прямоугольника – это сумма длин всех сторон: Р=(а + b) × 2, где а и b соседние (смежные) стороны прямоугольника
  5. Площадь прямоугольника – это произведение длин соседних (смежных) сторон, формула для нахождения площади прямоугольника:

S=ab, где a и b соседние стороны прямоугольника.

Квадрат

Квадрат – это прямоугольник, у которого все стороны равны.

Если диагонали четырехугольника равны то прямоугольникСвойства квадрата

  1. Диагонали квадрата равны (BD=AC).
  2. Диагонали квадрата пересекаются под углом 90 градусов.
  3. Диагонали квадрата точкой пересечения делятся пополам (BO=OD, AO=OC).
  4. Периметр квадрата – это сумма длин всех сторон. Так как все стороны квадрата равны, то его можно найти по формуле Р=4×а, где а — длина стороны квадрата.
  5. Площадь квадрата – это произведение длин соседних сторон, формула для нахождения площади прямоугольника S=a 2 , где a — длина стороны квадрата.

Если диагонали четырехугольника равны то прямоугольник

Параллелограмм

Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.

Если диагонали четырехугольника равны то прямоугольник

Ромб – это параллелограмм, у которого все стороны равны.

Если диагонали четырехугольника равны то прямоугольник

Трапеция

Трапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.

Если диагонали четырехугольника равны то прямоугольник

Виды трапеций

Трапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла.

Если диагонали четырехугольника равны то прямоугольник

углы А и С равны по 90 градусов

Средняя линия трапеции

Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.

Если диагонали четырехугольника равны то прямоугольник

Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.

Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.

По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17

Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции.

Если диагонали четырехугольника равны то прямоугольник

Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов).

Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . .

Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.

Если диагонали четырехугольника равны то прямоугольник

Для нахождения площади трапеции в справочном материале есть формула

S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63

pазбирался: Даниил Романович | обсудить разбор | оценить

Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.

Если диагонали четырехугольника равны то прямоугольник

Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.

Если диагонали четырехугольника равны то прямоугольник

Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 .

Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные:

с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88

pазбирался: Даниил Романович | обсудить разбор | оценить

Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8

Для выполнения данного задания надо подставить все известные данные в формулу:

12,8= d 1 × 16 × 2 5 . . 2 . .

В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . .

Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2

Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4

pазбирался: Даниил Романович | обсудить разбор | оценить

Если диагонали четырехугольника равны то прямоугольник

На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.

При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.

Задание №1

Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.

Объектыяблонитеплицасарайжилой дом
Цифры

Решение

Для решения 1 задачи работаем с текстом и планом одновременно:

при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.

Итак, получили следующее:

1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.

Заполняем нашу таблицу:

Объектыяблонитеплицасарайжилой дом
Цифры3517

Записываем ответ: 3517

Задание №2

Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?

Решение

Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).

Если диагонали четырехугольника равны то прямоугольник

Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».

Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.

Задание №3

Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.

Решение

Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.

Если диагонали четырехугольника равны то прямоугольник

Задание №4

Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.

Решение

Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки).

Если диагонали четырехугольника равны то прямоугольник

Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м

Задание №5

Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.

Номер магазинаРасход краскиМасса краски в одной банкеСтоимость одной банки краскиСтоимость доставки заказа
10,25 кг/кв.м6 кг3000 руб.500 руб.
20,4 кг/кв.м5 кг1900 руб.800 руб.

Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?

Решение

Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:

1 магазин: 232х0,25=58 кг

2 магазин: 232х0,4=92,8 кг

Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:

1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)

2 магазин: 92,8:5=18,56; значит надо 19 банок.

Вычислим стоимость краски в каждом магазине плюс доставка:

1 магазин: 10х3000+500=30500 руб.

2 магазин: 19х1900+800=36900 руб.

Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Видео:ЕГЭ 2017 | Задание 3 | Диагонали четырехугольника равны ... ✘ Школа ПифагораСкачать

ЕГЭ 2017 | Задание 3 | Диагонали четырехугольника равны ... ✘ Школа Пифагора

Какой четырёхугольник называется прямоугольником

Если диагонали четырехугольника равны то прямоугольникВ школьной программе на уроках геометрии приходится иметь дело с разнообразными видами четырёхугольников: ромбами, параллелограммами, прямоугольниками, трапециями, квадратами. Самыми первыми фигурами для изучения становятся прямоугольник и квадрат.

Итак, что же такое прямоугольник? Определение для 2 класса общеобразовательной школы будет выглядеть так: это четырёхугольник, у которого все четыре угла прямые. Несложно представить себе, как выглядит прямоугольник: это фигура с 4 прямыми углами и сторонами, попарно параллельными друг другу.

  • Признаки и свойства прямоугольника
  • Формулы для вычисления длины сторон
  • Периметр и площадь
  • Диагонали прямоугольника
  • Определение и свойства квадрата
  • Примеры вопросов и задач

Видео:Геометрия Признак прямоугольника Доказательство. Если диагонали параллелограмма равны, то этотСкачать

Геометрия Признак прямоугольника Доказательство. Если диагонали параллелограмма равны, то этот

Признаки и свойства прямоугольника

Как понять, решая очередную геометрическую задачу, с каким именно четырёхугольником мы имеем дело? Существуют три основных признака, по которым можно безошибочно определить, что речь идёт именно о прямоугольнике. Назовём их:

  • фигура является четырёхугольником, три угла которого равны 90°,
  • представленный четырёхугольник — это параллелограмм с равными диагоналями,
  • параллелограмм, который имеет по крайней мере один прямой угол.

Интересно знать: что такое выпуклый четырехугольник, его особенности и признаки.

Поскольку прямоугольник — это параллелограмм (т. е. четырёхугольник с попарно параллельными противоположными сторонами), то для него будут выполняться все его свойства и признаки.

Формулы для вычисления длины сторон

В прямоугольнике противолежащие стороны равны и взаимно параллельны. Более длинную сторону принято называть длиной (обозначается a), более короткую — шириной (обозначается b). В прямоугольнике на изображении длинами являются стороны AB и CD, а шириной — AC и B. D. Также они перпендикулярны к основаниям (т. е. являются высотами).

Это интересно: в геометрии луч это что такое, основное понятие.

Для нахождения сторон можно воспользоваться формулами, указанными ниже. В них приняты условные обозначения: a — длина прямоугольника, b — его ширина, d — диагональ (отрезок, соединяющий вершины двух углов, лежащих друг напротив друга), S — площадь фигуры, P — периметр, α угол между диагональю и длиной, β острый угол, который образован обеими диагоналями. Способы нахождения длин сторон:

  • С использованием диагонали и известной стороны: a = √(d ² b ²), b = √(d ² a ²).
  • По площади фигуры и одной из её сторон: a = S / b, b = S / a.
  • При помощи периметра и известной стороны: a = (P — 2 b) / 2, b = (P — 2 a) / 2.
  • Через диагональ и угол между ней и длиной: a = d sinα, b = d cosα.
  • Через диагональ и угол β: a = d sin 0,5 β, b = d cos 0,5 β.

Это интересно: как сравнить два отрезка способы с примерами.

Периметр и площадь

Если диагонали четырехугольника равны то прямоугольникПериметром четырёхугольника называют сумму длин всех его сторон. Чтобы вычислить периметр, могут использоваться следующие формулы:

  • Через обе стороны: P = 2 (a + b).
  • Через площадь и одну из сторон: P = (2S + 2a ²) / a, P = (2S + 2b ²) / b.

Площадь — это пространство, ограниченное периметром. Три основных способа для расчёта площади:

  • Через длины обеих сторон: S = a*b.
  • При помощи периметра и какой-либо одной известной стороны: S = (Pa — 2 a ²) / 2, S = (Pb — 2 b ²) / 2.
  • По диагонали и углу β: S = 0,5 d ² sinβ.

Диагонали прямоугольника

В задачах школьного курса математики часто требуется хорошо владеть свойствами диагоналей прямоугольника. Перечислим основные из них:

  1. Диагонали равны друг другу и делятся на два равных отрезка в точке их пересечения.
  2. Диагональ определяется как корень суммы обеих сторон, возведённых в квадрат (следует из теоремы Пифагора).
  3. Диагональ разделяет прямоугольник на два треугольника с прямым углом.
  4. Точка пересечения совпадает с центром описанной окружности, а сами диагонали — с её диаметром.

Это интересно: как обозначается площадь, примеры для вычисления.

Применяются следующие формулы для расчёта длины диагонали:

  • С использованием длины и ширины фигуры: d = √(a ² + b ²).
  • С использованием радиуса окружности, описанной вокруг четырёхугольника: d = 2 R.

Видео:Если диагонали параллелограмма равны, то это прямоугольник. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Если диагонали параллелограмма равны, то это прямоугольник. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Определение и свойства квадрата

Квадрат — это частный случай ромба, параллелограмма или прямоугольника. Его отличие от этих фигур заключается в том, что все его углы прямые, и все четыре стороны равны. Квадрат — это правильный четырёхугольник.

Четырёхугольник называют квадратом в следующих случаях:

  1. Если это прямоугольник, у которого длина a и ширина b равны.
  2. Если это ромб с равными длинами диагоналей и с четырьмя прямыми углами.

К свойствам квадрата относятся все ранее рассмотренные свойства, относящиеся к прямоугольнику, а также следующие:

  1. Диагонали перпендикулярны относительно друг друга (свойство ромба).
  2. Точка пересечения совпадает с центром вписанной окружности.
  3. Обе диагонали делят четырёхугольник на четыре одинаковых прямоугольных и равнобедренных треугольника.

Приведём часто используемые формулы для Если диагонали четырехугольника равны то прямоугольниквычисления периметра, площади и элементов квадрата:

  • Диагональ d = a √2.
  • Периметр P = 4 a.
  • Площадь S = a ².
  • Радиус описанной окружности вдвое меньше диагонали: R = 0,5 a √2.
  • Радиус вписанной окружности определяется как половинная длина стороны: r = a / 2.

Видео:Геометрия 8. Урок 4 - Прямоугольник, ромб, квадрат - свойства и признаки.Скачать

Геометрия 8. Урок 4 - Прямоугольник, ромб, квадрат - свойства и признаки.

Примеры вопросов и задач

Разберём некоторые вопросы, с которыми можно столкнуться при изучении курса математики в школе, и решим несколько простых задач.

Задача 1. Как изменится площадь прямоугольника, если увеличить длину его сторон в три раза?

Решение: Обозначим площадь исходной фигуры S0, а площадь четырёхугольника с утроенной длиной сторон — S1. По формуле, рассмотренной ранее, получаем: S0 = ab. Теперь увеличим длину и ширину в 3 раза и запишем: S1= 3 a • 3 b = 9 ab. Сравнивая S0 и S1, становится очевидно, что вторая площадь больше первой в 9 раз.

Вопрос 1. Четырёхугольник с прямыми углами — это квадрат?

Решение: Из определения следует, что фигура с прямыми углами является квадратом лишь тогда, когда длины всех его сторон равны. В остальных случаях фигура является прямоугольником.

Задача 2. Диагонали прямоугольника образуют угол 60 градусов. Ширина прямоугольника — 8. Рассчитать, чему равна диагональ.

Решение: Вспомним, что диагонали точкой пересечения разделяются пополам. Таким образом, имеем дело с равнобедренным треугольником с углом при вершине, равным 60°. Так как треугольник равнобедренный, то находящиеся при основании углы тоже будут одинаковы. Путём несложных вычислений получаем, что каждый из них равен 60°. Отсюда следует, что треугольник равносторонний. Ширина, известная нам, является основанием треугольника, следовательно, половина диагонали тоже равна 8, а длина целой диагонали в два раза больше и равна 16.

Вопрос 2. У прямоугольника все стороны равны или нет?

Решение: Достаточно вспомнить, что все стороны должны быть равны у квадрата, который является частным случаем прямоугольника. Во всех остальных случаях достаточное условие — это наличие минимум 3 прямых углов. Равенство сторон не является обязательным признаком.

Задача 3. Площадь квадрата известна и равна 289. Найти радиусы вписанной и описанной окружности.

Если диагонали четырехугольника равны то прямоугольникРешение: По формулам для квадрата проведём следующие расчёты:

  • Определим, чему равны основные элементы квадрата: a = √ S = √289 = 17, d = a √2 =1 7√2.
  • Подсчитаем, чему равен радиус описанной вокруг четырёхугольника окружности: R = 0,5 d = 8,5√2.
  • Найдём радиус вписанной окружности: r = a / 2 = 17 / 2 = 8,5.

🔥 Видео

Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Прямоугольник. 8 класс.Скачать

Прямоугольник. 8 класс.

ЕГЭ Математика Задание 6#27845Скачать

ЕГЭ Математика Задание 6#27845

Найти периметр четырехугольника, вершины которого лежат на серединах сторон другого четырехугольникаСкачать

Найти периметр четырехугольника, вершины которого лежат на серединах сторон другого четырехугольника

8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

№410. Является ли четырехугольник квадратом, если его диагонали: а) равны и взаимноСкачать

№410. Является ли четырехугольник квадратом, если его диагонали: а) равны и взаимно

8 класс, 7 урок, ПрямоугольникСкачать

8 класс, 7 урок, Прямоугольник

119 Если диагонали прямоугольника равны, то все его углы прямые (198)Скачать

119 Если диагонали прямоугольника равны, то все его углы прямые (198)

Геометрия Найдите диагональ четырехугольника, если его периметр равен 80 см, а периметрыСкачать

Геометрия Найдите диагональ четырехугольника, если его периметр равен 80 см, а периметры

№400. Докажите, что если в четырехугольнике все углы прямые, то четырехугольник — прямоугольник.Скачать

№400. Докажите, что если в четырехугольнике все углы прямые, то четырехугольник — прямоугольник.

Найдите длину диагонали четырехугольникаСкачать

Найдите длину диагонали четырехугольника

Прямоугольник. Что такое прямоугольник?Скачать

Прямоугольник. Что такое прямоугольник?

Площадь квадрата через диагональ 📐 Полезный файлик в комментариях)Скачать

Площадь квадрата через диагональ 📐 Полезный файлик в комментариях)

Геометрия 8 класс (Урок№6 - Прямоугольник. Ромб. Квадрат.)Скачать

Геометрия 8 класс (Урок№6 - Прямоугольник. Ромб. Квадрат.)
Поделиться или сохранить к себе: