Если диагонали четырехугольника равны то он параллелограмм

Параллелограмм: свойства и признаки

Если диагонали четырехугольника равны то он параллелограмм

О чем эта статья:

Видео:Геометрия Признак параллелограмма: Если в четырехугольнике диагонали точкой пересечения делятсяСкачать

Геометрия Признак параллелограмма: Если в четырехугольнике диагонали точкой пересечения делятся

Определение параллелограмма

Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны и равны. Как выглядит параллелограмм:

Частные случаи параллелограмма: ромб, прямоугольник, квадрат.

Диагонали — отрезки, которые соединяют противоположные вершины.

Свойства диагоналей параллелограмма:

  1. В параллелограмме точка пересечения диагоналей делит их пополам.
  2. Любая диагональ параллелограмма делит его на два равных треугольника.
  3. Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон.

Биссектриса угла параллелограмма — это отрезок, который соединяет вершину с точкой на одной из двух противоположных сторон и делит угол при вершине пополам.

Свойства биссектрисы параллелограмма:

  1. Биссектриса параллелограмма отсекает от него равнобедренный треугольник.
  2. Биссектрисы углов, прилежащих к одной стороне параллелограмма пересекаются под прямым углом.
  3. Отрезки биссектрис противоположных углов равны и параллельны.

Как найти площадь параллелограмма:

  1. S = a × h, где a — сторона, h — высота.
    Если диагонали четырехугольника равны то он параллелограмм
  2. S = a × b × sinα, где a и b — две стороны, sinα — синус угла между ними. Для ромба формула примет вид S = a 2 × sinα.
    Если диагонали четырехугольника равны то он параллелограмм
  3. Для ромба: S = 0,5 × (d1 × d2), где d1 и d2 — две диагонали.
    Для параллелограмма: S = 0,5 × (d1 × d2) × sinβ, где β — угол между диагоналями.
    Если диагонали четырехугольника равны то он параллелограмм

Периметр параллелограмма — сумма длины и ширины, умноженная на два.

P = 2 × (a + b), где a — ширина, b — высота.

У нас есть отличные дополнительные курсы по математике для учеников с 1 по 11 классы!

Видео:Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Свойства параллелограмма

Геометрическая фигура — это любое множество точек. У каждой фигуры есть свои свойства, которые отличают их между собой и помогают решать задачи по геометрии в 8 классе.

Рассмотрим основные свойства диагоналей и углов параллелограмма, узнаем чему равна сумма углов параллелограмма и другие особенности этой фигуры. Вот они:

  1. Противоположные стороны параллелограмма равны.
    ABCD — параллелограмм, значит, AB = DC, BC = AD.
    Если диагонали четырехугольника равны то он параллелограмм
  2. Противоположные углы параллелограмма равны.
    ABCD — параллелограмм, значит, ∠A = ∠C, ∠B = ∠D.
    Если диагонали четырехугольника равны то он параллелограмм
  3. Диагонали параллелограмма точкой пересечения делятся пополам.
    ABCD — параллелограмм, AC и BD — диагонали, AC∩BD=O, значит, BO = OD, AO = OC.
    Если диагонали четырехугольника равны то он параллелограмм
  4. Диагональ делит параллелограмм на два равных треугольника.
    ABCD — параллелограмм, AC — диагональ, значит, △ABC = △CDA.
    Если диагонали четырехугольника равны то он параллелограмм
  5. Сумма углов в параллелограмме, прилежащих к одной стороне, равна 180 градусам.
    ABCD — параллелограмм, значит, ∠A + ∠D = 180°.
    Если диагонали четырехугольника равны то он параллелограмм
  6. В параллелограмме диагонали d1, d2 и стороны a, b связаны следующим соотношением: d1 2 + d2 2 = 2 × (a 2 + b 2 ).
    Если диагонали четырехугольника равны то он параллелограмм

А сейчас докажем теорему, которая основана на первых двух свойствах.

Теорема 1. В параллелограмме противоположные стороны и противоположные углы равны.

Если диагонали четырехугольника равны то он параллелограмм

В любом выпуклом четырехугольнике диагонали пересекаются. Все, что мы знаем о точке их пересечения — это то, что она лежит внутри четырехугольника.

Если мы проведем обе диагонали в параллелограмме, точка пересечения разделит их пополам. Убедимся, так ли это:

  1. AB = CD как противоположные стороны параллелограмма.
  2. ∠1 = ∠2 как накрест лежащие углы при пересечении секущей AC параллельных прямых AB и CD; ∠3 = ∠4 как накрест лежащие углы при пересечении секущей BD параллельных прямых AB и CD.
  3. Следовательно, треугольник AOB равен треугольнику COD по второму признаку равенства треугольников, то есть по стороне и прилежащим к ней углам, из чего следует:
    • CO = AO
    • BO = DO

    Если диагонали четырехугольника равны то он параллелограмм

Теорема доказана. Наше предположение верно.

Видео:Геометрия Признак прямоугольника Доказательство. Если диагонали параллелограмма равны, то этотСкачать

Геометрия Признак прямоугольника Доказательство. Если диагонали параллелограмма равны, то этот

Признаки параллелограмма

Признаки параллелограмма помогают распознать эту фигуру среди других четырехугольников. Сформулируем три основных признака.

Первый признак параллелограмма. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.

Докажем 1 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB || CD
  • AB = CD

Если диагонали четырехугольника равны то он параллелограмм

Чтобы назвать этот четырехугольник параллелограммом, нужно внимательно рассмотреть его стороны.

Сейчас мы видим одну пару параллельных сторон. Нужно доказать, что вторая пара сторон тоже параллельна.

Шаг 2. Проведем диагональ. Получились два треугольника ABC и CDA, которые равны по первому признаку равенства, то есть по по двум сторонам и углу между ними:

  1. AC — общая сторона;
  2. По условию AB = CD;
  3. ∠1 = ∠2 как внутренние накрест лежащие углы при пересечении параллельных прямых AB и CD секущей АС.

Если диагонали четырехугольника равны то он параллелограмм

Шаг 3. Из равенства треугольников также следует:

Если диагонали четырехугольника равны то он параллелограмм

Эти углы тоже являются внутренними накрест лежащими для прямых CB и AD. А это как раз и есть признак параллельности прямых. Значит, CB || AD и ABCD — параллелограмм.

Вот так быстро мы доказали первый признак.

Второй признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.

Докажем 2 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB = CD
  • BC = AD

Если диагонали четырехугольника равны то он параллелограмм

Шаг 2. Проведем диагональ AC и рассмотрим треугольники ABC и CDA:

  • AC — общая сторона;
  • AB = CD по условию;
  • BC = AD по условию.

Из этого следует, что треугольники ABC и CDA равны по третьему признаку, а именно по трем сторонам.

Шаг 3. Из равенства треугольников следует:

А так как эти углы — накрест лежащие при сторонах BC и AD и диагонали AC, значит, стороны BC и AD параллельны.

Эти углы — накрест лежащие при сторонах AB и CD и секущей AC. Поэтому стороны AB и CD тоже параллельны. Значит, четырехугольник ABCD — параллелограмм, ЧТД.

Доказали второй признак.

Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Докажем 3 признак параллелограмма:

Шаг 1. Если диагонали четырехугольника ABCD делятся пополам точкой O, то треугольник AOB равен треугольнику COD по двум сторонам и углу между ними:

  • CO = OA;
  • DO = BO;
  • углы между ними равны, как вертикальные, то есть угол AOB равен углу COD.

Если диагонали четырехугольника равны то он параллелограмм

Шаг 2. Из равенства треугольников следует, что CD = AB.

Эти стороны параллельны CD || AB, по равенству накрест лежащих углов: ∠1 = ∠2 (следует из равенства треугольников AOB и COD).

Если диагонали четырехугольника равны то он параллелограмм

Значит, ABCD является параллелограммом по первому признаку, который мы доказали ранее. Что и требовалось доказать.

Теперь мы знаем свойства параллелограмма и то, что выделяет его среди других четырехугольников — признаки. Так как они совпадают, эти формулировки можно использовать для определения параллелограмма. Но самое распространенное определение все-таки связано с параллельностью противоположных сторон.

Видео:Если диагонали выпуклого четырёхугольника равны ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Если диагонали выпуклого четырёхугольника равны ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Параллелограммы

Если диагонали четырехугольника равны то он параллелограммСвойства и признаки параллелограмма
Если диагонали четырехугольника равны то он параллелограммСвойства и признаки прямоугольника
Если диагонали четырехугольника равны то он параллелограммСвойства и признаки ромба
Если диагонали четырехугольника равны то он параллелограммСвойства и признаки квадрата

Видео:Геометрия Признак ромба Если диагональ параллелограмма является биссектрисой его угла, то этотСкачать

Геометрия Признак ромба Если диагональ параллелограмма является биссектрисой его угла, то этот

Свойства и признаки параллелограмма

Тип утвержденияФигураРисунокФормулировка
ОпределениеПараллелограммЕсли диагонали четырехугольника равны то он параллелограммПараллелограммом называют четырёхугольник, у которого противолежащие стороны параллельны
ОпределениеДиагонали параллелограммаЕсли диагонали четырехугольника равны то он параллелограммДиагональю параллелограмма называют отрезок, соединяющий противоположные вершины
ОпределениеВысота параллелограммаЕсли диагонали четырехугольника равны то он параллелограммВысотой параллелограмма называют перпендикуляр, опущенный из любой точки на стороне параллелограмма на противоположную сторону параллелограмма или ее продолжение
СвойствоРавенство противолежащих сторонЕсли диагонали четырехугольника равны то он параллелограммЕсли четырёхугольник является параллелограммом, то его противолежащие стороны равны
ПризнакЕсли у четырёхугольника противолежащие стороны равны, то он является параллелограммом
ПризнакРавенство и параллельность двух противолежащих сторонЕсли диагонали четырехугольника равны то он параллелограммЕсли у четырёхугольника две противолежащие стороны равны и параллельны, то он является параллелограммом
СвойствоДиагонали точкой пересечения делятся пополамЕсли диагонали четырехугольника равны то он параллелограммЕсли четырёхугольник является параллелограммом, то его диагонали точкой пересечения делятся пополам
ПризнакЕсли у четырёхугольника диагонали точкой пересечения делятся пополам, то он является параллелограммом
СвойствоСуммы углов, прилежащих к сторонамЕсли диагонали четырехугольника равны то он параллелограммЕсли четырёхугольник является параллелограммом, то сумма углов, прилежащих к любой его стороне равна 180°
ПризнакЕсли у четырёхугольника сумма углов, прилежащих к любой его стороне равна 180° , то четырёхугольник является параллелограммом
СвойствоРавенство противолежащих угловЕсли четырёхугольник является параллелограммом, то его противолежащие углы равны
ПризнакЕсли у четырёхугольника противолежащие углы равны, то четырёхугольник является параллелограммом
СвойствоДва треугольника, на которые каждая диагональ делит четырёхугольникЕсли диагонали четырехугольника равны то он параллелограммЕсли четырёхугольник является параллелограммом, то каждая диагональ делит его на два равных треугольника
ПризнакЕсли каждая диагональ четырёхугольника делит его на два равных треугольника, то четырёхугольник является параллелограммом
СвойствоЧетыре треугольника, на которые диагонали делят четырёхугольникЕсли диагонали четырехугольника равны то он параллелограммЕсли четырёхугольник является параллелограммом, то диагонали делит его на четыре треугольника равной площади (равновеликих треугольника)
ПризнакЕсли диагонали четырёхугольника делят его на четыре треугольника равной площади (равновеликих треугольника), то четырёхугольник является параллелограммом
Определение: параллелограмм
Если диагонали четырехугольника равны то он параллелограммПараллелограммом называют четырёхугольник, у которого противолежащие стороны параллельны
Определение: диагонали параллелограмма
Если диагонали четырехугольника равны то он параллелограммДиагональю параллелограмма называют отрезок, соединяющий противоположные вершины
Определение: высота параллелограмма
Если диагонали четырехугольника равны то он параллелограммВысотой параллелограмма называютперпендикуляр, опущенный из любой точки на стороне параллелограмма на противоположную сторону параллелограмма или ее продолжение
Свойство: равенство противолежащих сторон
Если диагонали четырехугольника равны то он параллелограммЕсли четырёхугольник является параллелограммом, то его противолежащие стороны равны
Признак: равенство противолежащих сторон
Если диагонали четырехугольника равны то он параллелограммЕсли у четырёхугольника противолежащие стороны равны, то он является параллелограммом
Признак: равенство и параллельность двух противолежащих сторон
Если диагонали четырехугольника равны то он параллелограммЕсли у четырёхугольника две противолежащие стороны равны и параллельны, то он является параллелограммом
Свойство: диагонали точкой пересечения делятся пополам
Если диагонали четырехугольника равны то он параллелограммЕсли четырёхугольник является параллелограммом, то его диагонали точкой пересечения делятся пополам
Признак: диагонали точкой пересечения делятся пополам
Если диагонали четырехугольника равны то он параллелограммЕсли у четырёхугольника диагонали точкой пересечения делятся пополам, то он является параллелограммом
Свойство: суммы углов, прилежащих к сторонам
Если диагонали четырехугольника равны то он параллелограммЕсли четырёхугольник является параллелограммом, то сумма углов, прилежащих к любой его стороне равна 180°
Признак: суммы углов, прилежащих к сторонам
Если диагонали четырехугольника равны то он параллелограммЕсли у четырёхугольника сумма углов, прилежащих к любой его стороне равна 180° , то четырёхугольник является параллелограммом
Свойство: равенство противолежащих углов
Если диагонали четырехугольника равны то он параллелограммЕсли четырёхугольник является параллелограммом, то его противолежащие углы равны
Признак: равенство противолежащих углов
Если диагонали четырехугольника равны то он параллелограммЕсли у четырёхугольника противолежащие углы равны, то четырёхугольник является параллелограммом
Свойство: два треугольника, на которые каждая диагональ делит четырёхугольник
Если диагонали четырехугольника равны то он параллелограммЕсли четырёхугольник является параллелограммом, то каждая диагональ делит его на два равных треугольника
Признак: два треугольника, на которые каждая диагональ делит четырёхугольник
Если диагонали четырехугольника равны то он параллелограммЕсли каждая диагональ четырёхугольника делит его на два равных треугольника, то четырёхугольник является параллелограммом
Свойство: четыре треугольника, на которые диагонали делят четырёхугольник
Если диагонали четырехугольника равны то он параллелограммЕсли четырёхугольник является параллелограммом, то диагонали делит его на четыре треугольника равной площади (равновеликих треугольника)
Признак: четыре треугольника, на которые диагонали делят четырёхугольник
Если диагонали четырехугольника равны то он параллелограммЕсли диагонали четырёхугольника делят его на четыре треугольника равной площади (равновеликих треугольника), то четырёхугольник является параллелограммом
Параллелограмм
Если диагонали четырехугольника равны то он параллелограмм

Определение: Параллелограммом называют четырёхугольник, у которого противолежащие стороны параллельны

Диагонали параллелограммаЕсли диагонали четырехугольника равны то он параллелограмм

Определение: Диагональю параллелограмма называют отрезок, соединяющий противоположные вершины

Высота параллелограммаЕсли диагонали четырехугольника равны то он параллелограмм

Определение: Высотой параллелограмма называют перпендикуляр, опущенный из любой точки на стороне параллелограмма на противоположную сторону параллелограмма или ее продолжение

Равенство противолежащих сторонЕсли диагонали четырехугольника равны то он параллелограмм

Свойство: Если четырёхугольник является параллелограммом, то его противолежащие стороны равны.

Признак: Если у четырёхугольника противолежащие стороны равны, то он является параллелограммом.

Равенство и параллельность двух противолежащих сторонЕсли диагонали четырехугольника равны то он параллелограмм

Признак: Если у четырёхугольника две противолежащие стороны равны и параллельны, то он является параллелограммом.

Диагонали точкой пересечения делятся пополамЕсли диагонали четырехугольника равны то он параллелограмм

Свойство: Если четырёхугольник является параллелограммом, то его диагонали точкой пересечения делятся пополам.

Признак: Если у четырёхугольника диагонали точкой пересечения делятся пополам, то он является параллелограммом.

Суммы углов, прилежащих к сторонамЕсли диагонали четырехугольника равны то он параллелограмм

Свойство: Если четырёхугольник является параллелограммом, то сумма углов, прилежащих к любой его стороне равна 180° .

Признак: Если у четырёхугольника сумма углов, прилежащих к любой его стороне равна 180° , то четырёхугольник является параллелограммом.

Равенство противолежащих угловЕсли диагонали четырехугольника равны то он параллелограмм

Свойство: Если четырёхугольник является параллелограммом, то его противолежащие углы равны.

Признак: Если у четырёхугольника противолежащие углы равны, то четырёхугольник является параллелограммом.

Два треугольника, на которые каждая диагональ делит четырёхугольникЕсли диагонали четырехугольника равны то он параллелограмм

Свойство: Если четырёхугольник является параллелограммом, то каждая диагональ делит его на два равных треугольника.

Признак: Если каждая диагональ четырёхугольника делит его на два равных треугольника, то четырёхугольник является параллелограммом.

Четыре треугольника, на которые диагонали делят четырёхугольникЕсли диагонали четырехугольника равны то он параллелограмм

Свойство: Если четырёхугольник является параллелограммом, то диагонали делит его на четыре треугольника равной площади (равновеликих треугольника)

Признак: Если диагонали четырёхугольника делят его на четыре треугольника равной площади (равновеликих треугольника), то четырёхугольник является параллелограммом.

Видео:Геометрия Признак ромба Если диагонали параллелограмма перпендикулярны, то этот параллелограмм ромбСкачать

Геометрия Признак ромба Если диагонали параллелограмма перпендикулярны, то этот параллелограмм ромб

Свойства и признаки прямоугольника

Тип утвержденияФигураРисунокФормулировка
ОпределениеПрямоугольникЕсли диагонали четырехугольника равны то он параллелограммПрямоугольником называют параллелограмм, у которого все углы прямые
СвойствоРавенство диагоналейЕсли диагонали четырехугольника равны то он параллелограммЕсли параллелограмм является прямоугольником, то его диагонали равны
ПризнакЕсли у параллелограмма диагонали равны, то он является прямоугольником
Определение: прямоугольник
Если диагонали четырехугольника равны то он параллелограммПрямоугольником называют параллелограмм, у которого все углы прямые
Свойство: равенство диагоналей
Если диагонали четырехугольника равны то он параллелограммЕсли параллелограмм является прямоугольником, то его диагонали равны
Признак: равенство диагоналей
Если диагонали четырехугольника равны то он параллелограммЕсли у параллелограмма диагонали равны, то он является прямоугольником
Прямоугольник
Если диагонали четырехугольника равны то он параллелограмм

Определение: Прямоугольником называют параллелограмм, у которого все углы прямые.

Равенство диагоналейЕсли диагонали четырехугольника равны то он параллелограмм

Свойство: Если параллелограмм является прямоугольником, то его диагонали равны.

Признак: Если у параллелограмма диагонали равны, то он является прямоугольником.

Видео:Диагонали четырехугольника равны 4 и 5.Скачать

Диагонали четырехугольника равны 4 и 5.

Свойства и признаки ромба

Тип утвержденияФигураРисунокФормулировка
ОпределениеРомбЕсли диагонали четырехугольника равны то он параллелограммРомбом называют параллелограмм, у которого все стороны равны
СвойствоБиссектрисы углов
диагонали
Если диагонали четырехугольника равны то он параллелограммЕсли параллелограмм является ромбом, то его диагонали является биссектрисами углов
ПризнакЕсли у параллелограмма диагонали являются биссектрисами углов, то параллелограмм является ромбом
СвойствоПерпендикулярность диагоналейЕсли диагонали четырехугольника равны то он параллелограммЕсли параллелограмм является ромбом, то его диагонали перпендикулярны
ПризнакЕсли у параллелограмма диагонали перпендикулярны, то он является ромбом
Определение: ромб
Если диагонали четырехугольника равны то он параллелограммРомбом называют параллелограмм, у которого все стороны равны
Свойство: биссектрисы углов и диагонали
Если диагонали четырехугольника равны то он параллелограммЕсли параллелограмм является ромбом, то его диагонали являются биссектрисами углов
Признак: биссектрисы углов и диагонали
Если диагонали четырехугольника равны то он параллелограммЕсли у параллелограмма диагонали являются биссектрисами углов, то параллелограмм является ромбом
Свойство: перпендикулярность диагоналей
Если диагонали четырехугольника равны то он параллелограммЕсли параллелограмм является ромбом, то его диагонали перпендикулярны
Признак: перпендикулярность диагоналей
Если диагонали четырехугольника равны то он параллелограммЕсли у параллелограмма диагонали перпендикулярны, то он является ромбом
Ромб
Если диагонали четырехугольника равны то он параллелограмм

Определение: Ромбом называют параллелограмм, у которого все стороны равны

Биссектрисы углов и диагоналиЕсли диагонали четырехугольника равны то он параллелограмм

Признак: Если у параллелограмма диагонали являются биссектрисами углов, то параллелограмм является ромбом

Перпендикулярность диагоналейЕсли диагонали четырехугольника равны то он параллелограмм

Свойство: Если параллелограмм является ромбом, то его диагонали перпендикулярны

Признак: Если у параллелограмма диагонали перпендикулярны, то он является ромбом

Видео:Признак параллелограмма (если в четырехугольнике две стороны равны и параллельны, тоСкачать

Признак параллелограмма (если в четырехугольнике две стороны равны и параллельны, то

Свойства и признаки квадрата

Тип утвержденияФигураРисунокФормулировка
ОпределениеКвадратЕсли диагонали четырехугольника равны то он параллелограммКвадратом называют параллелограмм, у которого все стороны равны и все углы равны
СвойствоПерпендикулярность
и равенство диагоналей
Если диагонали четырехугольника равны то он параллелограммЕсли параллелограмм является квадратом, то его диагонали перпендикулярны и равны
ПризнакЕсли у параллелограмма диагонали перпендикулярны и равны, то он является квадратом
СвойствоПерпендикулярность диагоналейЕсли прямоугольник является квадратом, то его диагонали перпендикулярны
ПризнакЕсли у прямоугольника диагонали перпендикулярны, то он является квадратом
СвойствоРавенство диагоналейЕсли диагонали четырехугольника равны то он параллелограммЕсли ромб является квадратом, то его диагонали равны
ПризнакЕсли у ромба диагонали равны, то он является квадратом
Определение: квадрат
Если диагонали четырехугольника равны то он параллелограммКвадратом называют параллелограмм, у которого все стороны равны и все углы равны
Свойство: перпендикулярность и равенство диагоналей
Если диагонали четырехугольника равны то он параллелограммЕсли параллелограмм является квадратом, то его диагонали перпендикулярны и равны
Признак: перпендикулярность и равенство диагоналей
Если диагонали четырехугольника равны то он параллелограммЕсли у параллелограмма диагонали перпендикулярны и равны, то он является квадратом
Свойство: перпендикулярность диагоналей
Если диагонали четырехугольника равны то он параллелограммЕсли прямоугольник является квадратом, то его диагонали перпендикулярны
Признак: перпендикулярность диагоналей
Если диагонали четырехугольника равны то он параллелограммЕсли у прямоугольника диагонали перпендикулярны, то он является квадратом
Свойство: равенство диагоналей
Если диагонали четырехугольника равны то он параллелограммЕсли ромб является квадратом, то его диагонали равны
Признак: равенство диагоналей
Если диагонали четырехугольника равны то он параллелограммЕсли у ромба диагонали равны, то он является квадратом
Квадрат
Если диагонали четырехугольника равны то он параллелограмм

Определение: Квадратом называют параллелограмм, у которого все стороны равны и все углы равны

Перпендикулярность и равенство диагоналейЕсли диагонали четырехугольника равны то он параллелограмм

Свойство: Если параллелограмм является квадратом, то его диагонали перпендикулярны и равны

Признак: Если у параллелограмма диагонали перпендикулярны и равны, то он является квадратом

Перпендикулярность диагоналейЕсли диагонали четырехугольника равны то он параллелограмм

Свойство: Если прямоугольник является квадратом, то его диагонали перпендикулярны

Признак: Если у прямоугольника диагонали перпендикулярны, то он является квадратом

Равенство диагоналейЕсли диагонали четырехугольника равны то он параллелограмм

Свойство: Если ромб является квадратом, то его диагонали равны

Признак: Если у ромба диагонали равны, то он является квадратом

Видео:Найти периметр четырехугольника, вершины которого лежат на серединах сторон другого четырехугольникаСкачать

Найти периметр четырехугольника, вершины которого лежат на серединах сторон другого четырехугольника

Четырехугольники

теория по математике 📈 планиметрия

Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.

Выпуклый четырехугольник

Четырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD.

Если диагонали четырехугольника равны то он параллелограммОпределение

Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD.Если диагонали четырехугольника равны то он параллелограмм

Видео:Если диагонали параллелограмма равны, то он является ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Если диагонали параллелограмма равны, то он является ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Виды и свойства выпуклых четырехугольников

Сумма углов выпуклого четырехугольника равна 360 градусов.

Прямоугольник

Прямоугольник – это четырехугольник, у которого все углы прямые.

Если диагонали четырехугольника равны то он параллелограммНа рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь Если диагонали четырехугольника равны то он параллелограмм

  1. Противоположные стороны прямоугольника равны (АВ=CD, ВС=АD).
  2. Диагонали прямоугольника равны (АС=ВD).
  3. Диагонали пересекаются и точкой пересечения делятся пополам.
  4. Периметр прямоугольника – это сумма длин всех сторон: Р=(а + b) × 2, где а и b соседние (смежные) стороны прямоугольника
  5. Площадь прямоугольника – это произведение длин соседних (смежных) сторон, формула для нахождения площади прямоугольника:

S=ab, где a и b соседние стороны прямоугольника.

Квадрат

Квадрат – это прямоугольник, у которого все стороны равны.

Если диагонали четырехугольника равны то он параллелограммСвойства квадрата

  1. Диагонали квадрата равны (BD=AC).
  2. Диагонали квадрата пересекаются под углом 90 градусов.
  3. Диагонали квадрата точкой пересечения делятся пополам (BO=OD, AO=OC).
  4. Периметр квадрата – это сумма длин всех сторон. Так как все стороны квадрата равны, то его можно найти по формуле Р=4×а, где а — длина стороны квадрата.
  5. Площадь квадрата – это произведение длин соседних сторон, формула для нахождения площади прямоугольника S=a 2 , где a — длина стороны квадрата.

Если диагонали четырехугольника равны то он параллелограмм

Параллелограмм

Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.

Если диагонали четырехугольника равны то он параллелограмм

Ромб – это параллелограмм, у которого все стороны равны.

Если диагонали четырехугольника равны то он параллелограмм

Трапеция

Трапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.

Если диагонали четырехугольника равны то он параллелограмм

Виды трапеций

Трапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла.

Если диагонали четырехугольника равны то он параллелограмм

углы А и С равны по 90 градусов

Средняя линия трапеции

Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.

Если диагонали четырехугольника равны то он параллелограмм

Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.

Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.

По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17

Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции.

Если диагонали четырехугольника равны то он параллелограмм

Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов).

Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . .

Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.

Если диагонали четырехугольника равны то он параллелограмм

Для нахождения площади трапеции в справочном материале есть формула

S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63

pазбирался: Даниил Романович | обсудить разбор | оценить

Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.

Если диагонали четырехугольника равны то он параллелограмм

Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.

Если диагонали четырехугольника равны то он параллелограмм

Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 .

Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные:

с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88

pазбирался: Даниил Романович | обсудить разбор | оценить

Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8

Для выполнения данного задания надо подставить все известные данные в формулу:

12,8= d 1 × 16 × 2 5 . . 2 . .

В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . .

Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2

Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4

pазбирался: Даниил Романович | обсудить разбор | оценить

Если диагонали четырехугольника равны то он параллелограмм

На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.

При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.

Задание №1

Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.

Объектыяблонитеплицасарайжилой дом
Цифры

Решение

Для решения 1 задачи работаем с текстом и планом одновременно:

при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.

Итак, получили следующее:

1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.

Заполняем нашу таблицу:

Объектыяблонитеплицасарайжилой дом
Цифры3517

Записываем ответ: 3517

Задание №2

Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?

Решение

Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).

Если диагонали четырехугольника равны то он параллелограмм

Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».

Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.

Задание №3

Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.

Решение

Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.

Если диагонали четырехугольника равны то он параллелограмм

Задание №4

Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.

Решение

Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки).

Если диагонали четырехугольника равны то он параллелограмм

Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м

Задание №5

Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.

Номер магазинаРасход краскиМасса краски в одной банкеСтоимость одной банки краскиСтоимость доставки заказа
10,25 кг/кв.м6 кг3000 руб.500 руб.
20,4 кг/кв.м5 кг1900 руб.800 руб.

Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?

Решение

Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:

1 магазин: 232х0,25=58 кг

2 магазин: 232х0,4=92,8 кг

Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:

1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)

2 магазин: 92,8:5=18,56; значит надо 19 банок.

Вычислим стоимость краски в каждом магазине плюс доставка:

1 магазин: 10х3000+500=30500 руб.

2 магазин: 19х1900+800=36900 руб.

Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

🔍 Видео

Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

№957. Докажите, что если диагонали параллелограмма равны, то параллелограмм является прямоугольникомСкачать

№957. Докажите, что если диагонали параллелограмма равны, то параллелограмм является прямоугольником

8 класс, 5 урок, Признаки параллелограммаСкачать

8 класс, 5 урок, Признаки параллелограмма

Если диагонали параллелограмма равны, то это квадрат. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Если диагонали параллелограмма равны, то это квадрат. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Если диагонали параллелограмма равны, то это прямоугольник. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Если диагонали параллелограмма равны, то это прямоугольник. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

ЕГЭ 2017 | Задание 3 | Диагонали четырехугольника равны ... ✘ Школа ПифагораСкачать

ЕГЭ 2017 | Задание 3 | Диагонали четырехугольника равны ... ✘ Школа Пифагора

Если диагонали параллелограмма равны, то это ромб. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Если диагонали параллелограмма равны, то это ромб. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

8 класс, 4 урок, ПараллелограммСкачать

8 класс, 4 урок, Параллелограмм

№529. Диагонали четырехугольника равны 16 см и 20 см и пересекаются под углом в 30°. Найдите площадьСкачать

№529. Диагонали четырехугольника равны 16 см и 20 см и пересекаются под углом в 30°. Найдите площадь

ЕГЭ Математика Задание 6#27845Скачать

ЕГЭ Математика Задание 6#27845
Поделиться или сохранить к себе: