Егэ найти радиус описанной окружности

Егэ найти радиус описанной окружности

Задание 19. На клетчатой бумаге с размером клетки 1×1 изображён равносторонний треугольник. Найдите радиус описанной около него окружности.

Егэ найти радиус описанной окружности

Центр описанной окружности около равностороннего треугольника лежит на пересечении его высот (они же медианы и биссектрисы). Известно, что точка пересечения высот равностороннего треугольника делит их в отношении 2:1, считая от вершины. На рисунке ниже показана высота с отмеченным центром описанной (а также и вписанной) окружности.

Егэ найти радиус описанной окружности

Из рисунка видно, что радиус описанной окружности, проходя через вершины треугольника, равен 4 клеткам.

Видео:ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэ

Нахождение радиуса описанной вокруг треугольника окружности

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.

Видео:Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности | Лайфхак для запоминания

Формулы вычисления радиуса описанной окружности

Произвольный треугольник

Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:

Егэ найти радиус описанной окружности

Егэ найти радиус описанной окружности

где a, b, c – стороны треугольника, S – его площадь.

Прямоугольный треугольник

Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.

Егэ найти радиус описанной окружности

Равносторонний треугольник

Радиус описанной около правильного треугольника окружности вычисляется по формуле:

Егэ найти радиус описанной окружности

Егэ найти радиус описанной окружности

где a – сторона треугольника.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Примеры задач

Задание 1
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.

Решение
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:

Егэ найти радиус описанной окружности

Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:

Егэ найти радиус описанной окружности

Задание 2
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.

Решение
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:

Егэ найти радиус описанной окружности

Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.

Видео:Найти радиус описанной окружности. Задача ОГЭ-ЕГЭСкачать

Найти радиус описанной окружности. Задача ОГЭ-ЕГЭ

Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов

Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.

Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.

Вокруг любого треугольника можно описать окружность, причем только одну.

Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.

В любой треугольник можно вписать окружность, причем только одну.

Егэ найти радиус описанной окружности

Попробуйте сами описать окружность вокруг треугольника и вписать окружность в треугольник.

Как вы думаете, почему центр вписанной окружности — это точка пересечения биссектрис треугольника, а центр описанной окружности — точка пересечения серединных перпендикуляров к его сторонам?

В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.

Есть и другие задачи. Для их решения вам понадобятся еще две формулы площади треугольника, а также теорема синусов.

Вот еще две формулы для площади.
Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.

— радиус окружности, вписанной в треугольник.

Есть и еще одна формула, применяемая в основном в задачах части :

где — стороны треугольника, — радиус описанной окружности.

Для любого треугольника верна теорема синусов:

Егэ найти радиус описанной окружности

Ты нашел то, что искал? Поделись с друзьями!

. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .

Егэ найти радиус описанной окружности

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .

Запишем площадь треугольника АВС двумя способами:

Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .

В ответ запишем .

. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.

Егэ найти радиус описанной окружности

По теореме синусов,

Получаем, что . Угол — тупой. Значит, он равен .

. Боковые стороны равнобедренного треугольника равны , основание равно . Найдите радиус описанной окружности этого треугольника.

Егэ найти радиус описанной окружности

Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.

, где — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону пополам. По теореме Пифагора найдем . Тогда .

Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания .

💥 Видео

Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математикеСкачать

Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математике

Формулы для радиуса окружности #shortsСкачать

Формулы для радиуса окружности #shorts

✓ Радиус описанной окружности | ЕГЭ. Задание 1. Математика. Профильный уровень | Борис ТрушинСкачать

✓ Радиус описанной окружности | ЕГЭ. Задание 1. Математика. Профильный уровень | Борис Трушин

Радиус описанной окружности (ОГЭ, ЕГЭ)Скачать

Радиус описанной окружности (ОГЭ, ЕГЭ)

ЕГЭ профиль #3 / Радиус описанной окружности / прямоугольник / диагонали / решу егэСкачать

ЕГЭ профиль #3 / Радиус описанной окружности / прямоугольник / диагонали / решу егэ

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Задача 6 №27921 ЕГЭ по математике. Урок 138Скачать

Задача 6 №27921 ЕГЭ по математике. Урок 138

найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Задача 6 №27909 ЕГЭ по математике. Урок 129Скачать

Задача 6 №27909 ЕГЭ по математике. Урок 129

Как найти радиус описанной окружностиСкачать

Как найти радиус описанной окружности

Задача 6 №27913 ЕГЭ по математике. Урок 131Скачать

Задача 6 №27913 ЕГЭ по математике. Урок 131

ОГЭ 2023. РАЗБОР ЗАДАНИЯ №16 "Окружность"Скачать

ОГЭ 2023. РАЗБОР ЗАДАНИЯ №16 "Окружность"

ЕГЭ профиль. Найти радиус описанной окружности. #shortsСкачать

ЕГЭ профиль. Найти радиус описанной окружности. #shorts

Задача 6 №27923 ЕГЭ по математике. Урок 140Скачать

Задача 6 №27923 ЕГЭ по математике. Урок 140

Треугольник и окружность #shortsСкачать

Треугольник и окружность #shorts

Радиус описанной окружности трапецииСкачать

Радиус описанной окружности трапеции
Поделиться или сохранить к себе: