Двугранный угол для четырехугольника

Двугранные углы и формула для их вычисления. Двугранный угол при основании четырехугольной правильной пирамиды

В геометрии для изучения фигур используют две важные характеристики: длины сторон и углы между ними. В случае пространственных фигур к этим характеристиками добавляются двугранные углы. Рассмотрим, что это такое, а также опишем методику определения этих углов на примере пирамиды.

Видео:Определение истинной величины двугранного угла АВСD при ребре АВ методом замены плоскостей проекцииСкачать

Определение истинной величины двугранного угла АВСD при ребре АВ методом замены плоскостей проекции

Понятие о двугранном угле

Каждый знает, что две пересекающиеся прямые образуют некоторый угол с вершиной в точке их пересечения. Этот угол можно измерить с помощью транспортира или воспользоваться тригонометрическими функциями для его вычисления. Образованный двумя прямыми угол называется линейным.

Двугранный угол для четырехугольника Вам будет интересно: Географическая справка: площадь России в кв. км

Теперь представим, что в трехмерном пространстве имеется две плоскости, которые пересекаются по прямой. Они изображена на рисунке.

Двугранный угол для четырехугольника

Двугранным углом называется угол между двумя пересекающимися плоскостями. Так же как и линейный, он измеряется в градусах или радианах. Если к какой-либо точке прямой, по которой плоскости пересекаются, восстановить два перпендикуляра, лежащих в этих плоскостях, то угол между ними будет искомым двугранным. Определить этот угол проще всего, если воспользоваться уравнениями плоскостей в общем виде.

Видео:№174. Найдите двугранный угол ABCD тетраэдра ABCD, если углы DAB, DAC и ACB прямые, ACСкачать

№174. Найдите двугранный угол ABCD тетраэдра ABCD, если углы DAB, DAC и ACB прямые, AC

Уравнение плоскостей и формула для угла между ними

Уравнение любой плоскости в пространстве в общем виде записывается так:

A × x + B × y + C × z + D = 0.

Здесь x, y, z — это координаты точек, принадлежащих плоскости, коэффициенты A, B, C, D — некоторые известные числа. Удобство этого равенства для вычисления двугранных углов заключается в том, что оно в явном виде содержит координаты направляющего вектора плоскости. Будем обозначать его n¯. Тогда:

Двугранный угол для четырехугольника

Вектор n¯ перпендикулярен плоскости. Угол между двумя плоскостями равен углу между их направляющими векторами n1¯ и n2¯. Из математики известно, что угол, образованный двумя векторами, однозначно определяется из их скалярного произведения. Это позволяет записать формулу для вычисления двугранного угла между двумя плоскостями:

φ = arccos (|(n1¯ × n2¯)| / (|n1¯| × |n2¯|)).

Если подставить координаты векторов, то формула запишется в явном виде:

φ = arccos (|A1 × A2 + B1 × B2 + C1 × C2| / (√(A12 + B12 + C12) × √(A22 + B22 + C22))).

Знак модуля в числителе используется, чтобы определить только острый угол, поскольку двугранный угол всегда меньше или равен 90o.

Видео:10 класс, 22 урок, Двугранный уголСкачать

10 класс, 22 урок, Двугранный угол

Пирамида и ее углы

Двугранный угол для четырехугольника

Пирамидой называют фигуру, которая образована одним n-угольником и n треугольниками. Здесь n — целое число, равное количеству сторон многоугольника, который является основанием пирамиды. Данная пространственная фигура является многогранником или полиэдром, поскольку она состоит из плоских граней (сторон).

Двугранные углы многогранника-пирамиды могут быть двух типов:

  • между основанием и боковой стороной (треугольником);
  • между двумя боковыми сторонами.

Если рассматривается пирамида правильная, то названные углы для нее определить несложно. Для этого по координатам трех известных точек следует составить уравнение плоскостей, а затем воспользоваться приведенной в пункте выше формулой для угла φ.

Ниже приведем пример, в котором покажем, как найти двугранные углы при основании пирамиды четырехугольной правильной.

Видео:10 класс - Геометрия - Двугранный уголСкачать

10 класс - Геометрия - Двугранный угол

Четырехугольная правильная пирамида и угол при ее основании

Предположим, что дана правильная пирамида с квадратным основанием. Длина стороны квадрата равна a, высота фигура составляет h. Найдем угол между основанием пирамиды и ее боковой стороной.

Двугранный угол для четырехугольника

Поместим начало координатной системы в центр квадрата. Тогда координаты точек A, B, C, D, показанных на рисунке, будут равны:

Рассмотрим плоскости ACB и ADB. Очевидно, что направляющий вектор n1¯ для плоскости ACB будет равен:

Для определения направляющего вектора n2¯ плоскости ADB поступим следующим образом: найдем произвольные два вектора, которые ей принадлежат, например, AD¯ и AB¯, затем, вычислим их векторное произведение. Его результат даст координаты n2¯. Имеем:

AD¯ = D — A = (0; 0; h) — (a/2; -a/2; 0) = (-a/2; a/2; h);

AB¯ = B — A = (a/2; a/2; 0) — (a/2; -a/2; 0) = (0; a; 0);

n2¯ = [AD¯ × AB¯] = [(-a/2; a/2; h) × (0; a; 0)] = (-a × h; 0; -a2/2).

Поскольку умножение и деление вектора на число не изменяет его направления, то преобразуем полученный n2¯, разделив его координаты на -a, получим:

Мы определили направляющие вектора n1¯ и n2¯ для плоскостей основания ACB и боковой стороны ADB. Остается воспользоваться формулой для угла φ:

φ = arccos (|(n1¯ × n2¯)| / (|n1¯| × |n2¯|)) = arccos (a / (2 × √h2 + a2/4)).

Преобразуем полученное выражение и перезапишем его так:

φ = arccos (a / √(a2 + 4 × h2)).

Мы получили формулу для двугранного угла при основании для правильной четырехугольной пирамиды. Зная высоту фигуры и длину ее стороны, можно рассчитать угол φ. Например, для пирамиды Хеопса, сторона основания которой составляет 230,4 метра, а начальная высота равнялась 146,5 метра, угол φ будет равен 51,8o.

Двугранный угол для четырехугольника

Определить двугранный угол для четырехугольной правильной пирамиды также можно с помощью геометрического метода. Для этого достаточно рассмотреть прямоугольный треугольник, образованный высотой h, половиной длины основания a/2 и апофемой равнобедренного треугольника.

Видео:ДВУГРАННЫЕ УГЛЫ ЧАСТЬ I #shorts #егэ #огэ #математика #профильныйегэСкачать

ДВУГРАННЫЕ УГЛЫ ЧАСТЬ I  #shorts #егэ #огэ #математика #профильныйегэ

Повторение теории и решение задач по теме «Двугранный угол. Перпендикулярность плоскостей»

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Двугранный угол для четырехугольника

Тема данного урока: « Повторение теории и решение задач по теме “Двугранный угол. Перпендикулярность плоскостей”». На этом занятии мы повторим теорию, вспомнив определение параллельных прямых и лемму о пересечении параллельными прямыми плоскости. Далее повторим определение о параллельности прямой и плоскости и ее признак. Затем решим несколько задач по теме «Двугранный угол. Перпендикулярность плоскостей».

Видео:№176. Через сторону AD ромба ABCD проведена плоскость ADM так, что двугранный угол BADM равенСкачать

№176. Через сторону AD ромба ABCD проведена плоскость ADM так, что двугранный угол BADM равен

Двугранный угол для четырехугольника

Двугранный угол для четырехугольника

Замечание . Иногда говорят, что двугранный угол α a β образован двумя полуплоскостями α и β , имеющими общую граничную прямую a .

Фигуры, образованные двумя страницами одной книги, двумя соседними гранями куба, — модели двугранного угла.

Для измерения двугранного угла введём понятие его линейного угла. На ребре a двугранного угла α a β отметим произвольную точку O и в гранях α и β проведём из точки O соответственно лучи OA и OB , перпендикулярные ребру a (рис. 96, а ). Угол AOB , образованный этими лучами, называется линейным углом двугранного угла α a β .

Так как OA ⊥ a и OB ⊥ a , то плоскость AOB перпендикулярна прямой a . Это означает, что линейный угол двугранного угла есть пересечение данного двугранного угла и плоскости, перпендикулярной его ребру .

Вследствие произвольного выбора точки O на ребре двугранного угла заключаем, что двугранный угол имеет бесконечное множество линейных углов. Докажем, что все они равны. Действительно, рассмотрим два линейных угла AOB и A 1 O 1 B 1 двугранного угла α a β (рис. 96, б ). Лучи OA и O 1 A 1 лежат в одной грани α и перпендикулярны прямой a — ребру двугранного угла, поэтому они сонаправлены. Аналогично получаем, что сонаправлены лучи OB и O 1 B 1 . Тогда ∠ AOB = ∠ A 1 O 1 B 1 (как углы с сонаправленными сторонами).

Таким образом, нами доказана теорема.

Двугранный угол для четырехугольникаТеорема 27. Величина линейного угла не зависит от выбора его вершины на ребре двугранного угла.

Иначе говоря, все линейные углы данного двугранного угла равны между собой.

Это позволяет ввести следующее определение.

Определение. Величиной двугранного угла называется величина его линейного угла.

Двугранный угол для четырехугольника

Величина двугранного угла, измеренная в градусах, принадлежит промежутку (0 ° ; 180 ° ).

На рисунке 97 изображён двугранный угол, градусная мера (величина) которого равна 30 ° . В этом случае также говорят, что двугранный угол равен тридцати градусам.

Двугранный угол является острым (рис. 98, а ), прямым (рис. 98, б ) или тупым (рис. 98, в ), если его линейный угол соответственно острый, прямой или тупой.

Двугранный угол для четырехугольника

Заметим, что аналогично тому, как и на плоскости, в пространстве определяются смежные (рис. 99, а ) и вертикальные (рис. 99, б ) двугранные углы . При этом справедливы и аналогичные теоремы о величинах этих углов.

Попробуйте доказать самостоятельно следующие два утверждения, важные для решения задач.

 На гранях двугранного угла величины α взяты точки A и B ; A 1 и B 1 — проекции этих точек на ребро двугранного угла; AA 1 = a ; BB 1 = b ; A 1 B 1 = h . Тогда

AB = Двугранный угол для четырехугольника.

Двугранный угол для четырехугольника

 Если внутри двугранного угла величины α взята точка на расстояниях a и b от граней двугранного угла, то её расстояние от ребра двугранного угла равно Двугранный угол для четырехугольника.

14.2. Угол между двумя плоскостями

Две пересекающиеся плоскости образуют четыре двугранных угла с общим ребром (рис. 100). Если величина одного из них равна ϕ , то величины трёх остальных равны соответственно 180 ° – ϕ , ϕ , 180 ° – ϕ (почему?). Наименьшая из этих величин принимается за величину угла между данными пересекающимися плоскостями.

Определение. Углом между двумя пересекающимися плоскостями называется наименьший из двугранных углов, образованных при их пересечении.

Угол между параллельными или совпадающими плоскостями полагается считать равным нулю.

Если величина угла между плоскостями α и β равна ϕ , то пишут: Двугранный угол для четырехугольника( α ; β ) = ϕ .

Двугранный угол для четырехугольника

Так как двугранный угол измеряется своим линейным углом, то из выше приведённого определения следует, что угол между пересекающимися плоскостями равен углу между пересекающимися прямыми, лежащими в этих плоскостях и перпендикулярными к линии их пересечения (см. рис. 100). Это означает, что величина угла между плоскостями принадлежит промежутку [0 ° ; 90 ° ] .

Двугранный угол для четырехугольника

ЗАДаЧа. Отрезок DM длиной 3,2 перпендикулярен плоскости ромба ABCD ( ∠ ADC — тупой). Диагонали ромба равны 12 и 16. Найти углы между плоскостями:

а) ABC и MBC ; б) AMD и CMD .

Решение. а) Пусть DE — высота ромба ABCD (рис. 101). Тогда по теореме о трёх перпендикулярах ME ⊥ BC и ∠ DEM = ϕ — линейный угол двугранного угла, образованного плоскостями ABC и MBC . Найдём величину этого угла.

По условию задачи DM ⊥ ( ABC ), поэтому ⧌ MDE — прямоугольный, значит, tg ϕ = Двугранный угол для четырехугольника. Так как DE — высота ромба ABCD , то DE = Двугранный угол для четырехугольника, где S — площадь этого ромба. Сторона BC ромба является гипотенузой прямоугольного треугольника BOC , катеты OB и OC которого равны 6 и 8. Значит, BC = Двугранный угол для четырехугольника= Двугранный угол для четырехугольника= 10.

Учитывая, что S = Двугранный угол для четырехугольника• AC • BD = Двугранный угол для четырехугольника•12•16 = 96, находим: DE = Двугранный угол для четырехугольника= 9,6. Тогда tg ϕ = Двугранный угол для четырехугольника= Двугранный угол для четырехугольника= Двугранный угол для четырехугольника, откуда ϕ = arctg Двугранный угол для четырехугольника.

б) Так как отрезок DM — перпендикуляр к плоскости ромба ABCD , то AD ⊥ DM , CD ⊥ DM , значит, ∠ ADC = ψ — линейный угол двугранного угла, образованного пересекающимися плоскостями ADM и CDM . Найдём этот угол.

В треугольнике ACD по теореме косинусов находим

cos ψ = Двугранный угол для четырехугольника= Двугранный угол для четырехугольника= – Двугранный угол для четырехугольника,

откуда ψ = arccos Двугранный угол для четырехугольника.

Ответ: а) arctg Двугранный угол для четырехугольника; б) arccos Двугранный угол для четырехугольника.

📸 Видео

Двугранный угол. Признак перпендикулярности плоскостей. Видеоурок 10. Геометрия 10 классСкачать

Двугранный угол. Признак перпендикулярности плоскостей. Видеоурок 10. Геометрия 10 класс

22. Двугранный уголСкачать

22. Двугранный угол

Определение истинной величины треугольника АВС. Метод плоско-параллельного перемещенияСкачать

Определение истинной величины треугольника АВС. Метод плоско-параллельного перемещения

ДВУГРАННЫЙ УГОЛ 10 11 класс прямой двугранный уголСкачать

ДВУГРАННЫЙ УГОЛ 10 11 класс прямой двугранный угол

№168. Двугранный угол равен φ. На одной грани этого угла лежит точка, удаленная на расстояние dСкачать

№168. Двугранный угол равен φ. На одной грани этого угла лежит точка, удаленная на расстояние d

№170. Из вершины В треугольника ABC, сторона АС которого лежит в плоскости а, проведен к этойСкачать

№170. Из вершины В треугольника ABC, сторона АС которого лежит в плоскости а, проведен к этой

Двугранный уголСкачать

Двугранный угол

8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

№190. Дан куб ABCDA1B1C1D1. Найдите следующие двугранные углы: а) АВВ1ССкачать

№190. Дан куб ABCDA1B1C1D1. Найдите следующие двугранные углы: а) АВВ1С

ГЕОМЕТРИЯ 10 класс : Двугранный угол и Признак перпендикулярности двух плоскостейСкачать

ГЕОМЕТРИЯ 10 класс : Двугранный угол и Признак перпендикулярности двух плоскостей

Определить величину двугранного угла при ребре SB между треугольниками SAB и SBC. Замена плоскостейСкачать

Определить величину двугранного угла при ребре SB между треугольниками SAB и  SBC. Замена плоскостей

Определение натуральной величины треугольника АВС методом вращения вокруг горизонтали или фронталиСкачать

Определение натуральной величины треугольника АВС методом вращения вокруг горизонтали или фронтали

№216. Точки А и В лежат на ребре данного двугранного угла, равного 120°. Отрезки АС и ВD проведены вСкачать

№216. Точки А и В лежат на ребре данного двугранного угла, равного 120°. Отрезки АС и ВD проведены в
Поделиться или сохранить к себе: