Две окружности не имеющие общих точек

Окружность. Относительное взаимоположение окружностей.

Если две окружности имеют только одну общую точку, то говорят, что они касаются.

Если же две окружности имеют две общие точки, то говорят, что они пересекаются.

Трех общих точек две не сливающиеся окружности иметь не могут, потому, что в противном случае через три точки можно было бы провести две различные окружности, что невозможно.

Будем называть линией центров прямую, проходящую через центры двух окружностей (например, прямую OO1).

Теорема.

Если две окружности имеют общую точку по одну сторону от линии центров, то они имеют общую точку и по другую сторону от этой линии, т.е. такие окружности пересекаются.

Пусть окружности O и O1 имеют общую точку A, лежащую вне линии центров OO1. Требуется доказать, что эти окружности имеют еще общую точку по другую сторону от прямой OO1.

Опустим из A на прямую OO1 перпендикуляр AB и продолжим его на расстояние BA1, равное AB. Докажем теперь, что точка A1 принадлежит обеим окружностям. Из построения видно, что точки O и O1 лежат на перпендикуляре, проведенном к отрезку AA1 через его середину. Из этого следует, что точка O одинаково удалена от A и A1. То же можно сказать и о точке O1. Значит обе окружности, при продолжении их, пройдут через A1.Таким образом, окружности имеют две общие точки : A (по условию) и A1 (по доказанному). Следовательно, они пересекаются.

Следствие.

Общая хорда (AA1) двух пересекающихся окружностей перпендикулярна к линии центров и делится ею пополам.

Теоремы.

1. Если две окружности имеют общую точку на линии их центров или на ее продолжении, то они касаются.

2. Обратно: если две окружности касаются, то общая их точка лежит на линии центров или на ее продолжении.

Признаки различных случаев относительного положения окружностей.

Пусть имеем две окружности с центрами O и O1, радиусами R и R1 и расстоянием между центрами d.

Эти окружности могут находиться в следующих 5-ти относительных положениях:

Две окружности не имеющие общих точек

1. Окружности лежат одна вне другой, не касаясь. В этом случае, очевидно, d > R + R1 .

2. Окружности имеют внешнее касание. Тогда d = R + R1, так как точка касания лежит на линии центров O O1.

3. Окружности пересекаются. Тогда d R + R1, потому что в треугольнике OAO1 сторона OO1 меньше суммы, но больше разности двух других сторон.

4. Окружности имеют внутреннее касание. В этом случае в d = R — R1, потому что точка касания лежит на продолжении линии OO1.

5. Одна окружность лежит внутри другой, не касаясь. Тогда, очевидно,

d R + R1, то окружности расположены одна вне другой, не касаясь.

2. Если d = R + R1, то окружности касаются извне.

3. Если d R — R1, то окружности пересекаются.

4. Если d = R — R1, то окружности касаются изнутри.

5. Если d R Е R1. Значит, все эти случаи исключаются. Остается один возможный, именно тот, который требовалось доказать. Таким образом, перечисленные признаки различных случаев относительно положения двух окружностей не только необходимы, но и достаточны.

Видео:№675. Стороны угла О касаются каждой из двух окружностей, имеющих общую касательную в точке АСкачать

№675. Стороны угла О касаются каждой из двух окружностей, имеющих общую касательную в точке А

Нарисуйте две окружности: а) не имеющие общих точек; б) концентрические; в) касающиеся внешним образом; г) касающиеся внутренним образом; д) пересекающиеся

Видео:Взаимное расположение окружностей. Окружности не имеют общих точек.Скачать

Взаимное расположение окружностей. Окружности не имеют общих точек.

Ваш ответ

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Похожие вопросы

  • Все категории
  • экономические 43,277
  • гуманитарные 33,618
  • юридические 17,900
  • школьный раздел 606,909
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:9 класс, 8 урок, Взаимное расположение двух окружностейСкачать

9 класс, 8 урок, Взаимное расположение двух окружностей

Взаимное расположение окружностей

Выясним, каким может быть взаимное расположение двух окружностей.

Две окружности могут пересекаться, не пересекаться либо касаться друг друга.

I. Пересекающиеся окружности имеют две общие точки.

Две окружности не имеющие общих точек

Две окружности не имеющие общих точек

Расстояние между центрами двух пересекающихся окружностей больше разности, но меньше суммы их радиусов:

Две окружности не имеющие общих точек

II. Не пересекающиеся окружности не имеет общих точек.

Две окружности не имеющие общих точек

Если одна окружность лежит внутри другой, то расстояние между центрами меньше разности их радиусов:

Две окружности не имеющие общих точек

Две окружности не имеющие общих точекЕсли одна окружность находится вне другой, расстояние между центрами больше суммы их радиусов:

Две окружности не имеющие общих точекR + r]» title=»Rendered by QuickLaTeX.com»/>

III. Касающиеся окружности имеют одну общую точку — точку касания.

Две окружности не имеющие общих точек

При внешнем касании расстояние между центрами окружностей равно сумме их радиусов:

Две окружности не имеющие общих точек

Две окружности не имеющие общих точек

При внутреннем касании расстояние между центрами равно разности радиусов:

Две окружности не имеющие общих точек

Концентрические окружности разного радиуса не пересекаются. Расстояние между центрами концентрических окружностей равно нулю: O1O2=0.

🌟 Видео

Теорема о числе точек пересечения двух окружностейСкачать

Теорема о числе точек пересечения двух окружностей

Геометрия Окружности с центрами в точках O1 и O2 не имеют общих точек. Внутренняя общая касательнаяСкачать

Геометрия Окружности с центрами в точках O1 и O2 не имеют общих точек. Внутренняя общая касательная

Взаимное расположение двух окружностей. Урок 8. Геометрия 9 классСкачать

Взаимное расположение двух окружностей. Урок 8. Геометрия 9 класс

Задача 25 ОГЭ Математика 1 ЯщенкоСкачать

Задача 25 ОГЭ Математика 1 Ященко

Урок 5. №24 ОГЭ. Две окружности и подобие.Скачать

Урок 5. №24 ОГЭ.  Две окружности и подобие.

Две окружности | Резерв досрока ЕГЭ-2019. Задание 16. Профильный уровень | Борис Трушин |Скачать

Две окружности | Резерв досрока ЕГЭ-2019. Задание 16. Профильный уровень | Борис Трушин |

Геометрия 9 класс (Урок№10 - Взаимное расположение двух окружностей.)Скачать

Геометрия 9 класс (Урок№10 - Взаимное расположение двух окружностей.)

Две окружности на плоскости. Математика. 6 класс.Скачать

Две окружности на плоскости. Математика. 6 класс.

Лекция 42. Эстетическая геометрия. Пучок окружностей не имеющих общих точек и глоток теории группСкачать

Лекция 42. Эстетическая геометрия. Пучок окружностей не имеющих общих точек и глоток теории групп

Геометрия 16-07. Взаимное расположение двух и более окружностей. Задача 7Скачать

Геометрия 16-07. Взаимное расположение двух и более окружностей. Задача 7

ОГЭ 20#2🔴Скачать

ОГЭ 20#2🔴

Параметр. Серия 13. Решение задач с окружностями. Касание двух окружностейСкачать

Параметр. Серия 13. Решение задач с окружностями. Касание двух окружностей

8 класс, 31 урок, Взаимное расположение прямой и окружностиСкачать

8 класс, 31 урок, Взаимное расположение прямой и окружности

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

ОГЭ 24 | КАК РЕШАТЬ ЗАДАЧИ НА ДОКАЗАТЕЛЬСТВО | ОКРУЖНОСТИ С ВНУТРЕННЕЙ КАСАТЕЛЬНОЙСкачать

ОГЭ 24 | КАК РЕШАТЬ ЗАДАЧИ НА ДОКАЗАТЕЛЬСТВО | ОКРУЖНОСТИ С ВНУТРЕННЕЙ КАСАТЕЛЬНОЙ

ЕГЭ задание 16 Взаимное расположение окружностейСкачать

ЕГЭ задание 16 Взаимное расположение окружностей
Поделиться или сохранить к себе: