Докажите что четырехугольник klmn параллелограмм

Задача 8220 .

Условие

Докажите что четырехугольник klmn параллелограмм

На сторонах AB,‍ BC,‍ CD‍ и AD‍ параллелограмма ABCD‍ отмечены точки K,‍ L,‍ M‍ и N‍ соответственно, причём ‍AK/KB=‍BL‍/LC=‍CM‍/MD=‍DN‍/NA.‍

а) Докажите, что четырёхугольник KLMN —‍ параллелограмм, а его центр совпадает с центром параллелограмма ABCD.‍

б) Найдите отношение площадей параллелограммов KLMN‍ и ABCD,‍ если известно, что ‍AK/KB=2.‍

Решение

а) Пусть диагональ NL‍ четырёхугольника KLMN‍ и диагональ AC‍ параллелограмма ABCD‍ пересекаются в точке O‍ (рис. 1). Треугольники AON‍ и COL‍ равны по стороне (AN = CL,‍ так как эти отрезки составляют одну и ту же часть от равных отрезков AD‍ и BC)‍ и двум прилежащим к ней углам. Значит, OL = ON‍ и AO = OC.‍ Поэтому O —‍ центр параллелограмма ABCD.‍ Аналогично доказывается, что диагональ KM‍ четырёхугольника KLMN‍ проходит через точку O‍ и делится ею пополам. Следовательно, KLMN —‍ параллелограмм с центром O.‍

б) Обозначим S‍(ABCD) = S‍ (рис. 2). Тогда
S‍△ABC=‍1‍/2*S, S‍△BKL=BK‍/BA*‍BL/‍BC*S‍△ABC=‍1‍/3*‍2/‍3*‍1/2*S=‍1‍/9*S‍
Аналогично S‍△MDN=1/‍9*S, S‍△MCL=‍1/‍9*S, S‍△KAN=‍1‍/9*S.‍
Значит,S‍(KLMN) = S − 4*‍1/‍9*S =‍ 5/‍9S.‍
Следовательно, ‍S‍(KLMN):S‍(ABCD) =‍ 5 : 9. Докажите что четырехугольник klmn параллелограмм

Видео:№378. Докажите, что параллелограмм является выпуклым четырехугольником.Скачать

№378. Докажите, что параллелограмм является выпуклым четырехугольником.

Докажите что четырехугольник klmn параллелограмм

Докажите что четырехугольник klmn параллелограмм

Видео:Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Источник задания: Решение 2951. ЕГЭ 2016 Математика, И.В. Ященко. 30 вариантов. Ответ.

Задание 16. На сторонах АВ, ВС, CD и AD параллелограмма ABCD отмечены точки K, L, М и N соответственно, причем AK/KB=BL/LC=CM/MD=DN/NA.

а) Докажите, что четырёхугольник KLMN — параллелограмм, а его центр совпадает с центром параллелограмма ABCD.

б) Найдите отношение площадей параллелограммов KLMN и ABCD, если известно, что AK/KB = 2.

Докажите что четырехугольник klmn параллелограмм

а) Так как ABCD – параллелограмм, то Докажите что четырехугольник klmn параллелограмм, Докажите что четырехугольник klmn параллелограмм, AB=CD, BC=AD, Докажите что четырехугольник klmn параллелограмм, Докажите что четырехугольник klmn параллелограмм. Обозначим через Докажите что четырехугольник klmn параллелограммотрезок KB, соответственно, длина отрезка Докажите что четырехугольник klmn параллелограмм, где Докажите что четырехугольник klmn параллелограмм— некоторое положительное число. Аналогично определим и для других отрезков (см. рисунок):

Докажите что четырехугольник klmn параллелограмм

Рассмотрим треугольники KBL и MDN, которые равны по двум сторонам и углу (см. рисунок), следовательно, KL=MN. По аналогии из треугольников AKN и CML следует равенство KN=LM. Таким образом, доказали, что KLMN – параллелограмм.

б) Так как Докажите что четырехугольник klmn параллелограмм, то число Докажите что четырехугольник klmn параллелограмм. Площадь параллелограмма ABCD можно найти по формуле

Докажите что четырехугольник klmn параллелограмм.

Площадь параллелограмма KLMN можно найти как разность между площадью параллелограмма ABCD и четырех равных площадей треугольников KBL, LCM, NDM и ANK:

Докажите что четырехугольник klmn параллелограмм

и отношение площадей равно

Докажите что четырехугольник klmn параллелограмм.

Ответ: Докажите что четырехугольник klmn параллелограмм.

Видео:№382. Диагонали параллелограмма ABCD пересекаются в точке О. Докажите, что четырехугольникСкачать

№382. Диагонали параллелограмма ABCD пересекаются в точке О. Докажите, что четырехугольник

Урок геометрии по теме «Теорема Вариньона. Решение задач». 8-й класс

Класс: 8

Презентация к уроку

Загрузить презентацию (276 кБ)

Цель: изучить теорему Вариньона и научиться применять ее на практике с наименьшими временными затратами.

Задачи:

  1. Изучить теоретический материал: понятия «параллелограмм Вариньона», бимедианы четырехугольника, разобрать доказательство теоремы Вариньона и следствия из нее.
  2. Сравнить количество времени, необходимое для решения задач традиционным способом и, используя теорему Вариньона.
  3. Показать решение олимпиадных заданий с помощью параллелограмма Вариньона.

Видео:8 класс, 4 урок, ПараллелограммСкачать

8 класс, 4 урок, Параллелограмм

Ход урока

Введение

В 21 век, в век информационных технологий, главным ресурсом является время. Тысячи людей желают посещать тренинги, семинары и лекции по тайм-менеджменту, где бы их научили, как рационально, с минимальными потерями и максимальной пользой использовать свое время. Большую часть времени у ученика занимает обучение в школе и приготовление домашнего задания. Одним из самых сложных предметов в школе является геометрия. В частности, задачи на доказательство требуют значительной траты времени, поэтому у многих отсутствует интерес к решению подобных заданий. В теме «Четырехугольники» эту проблему может решить использование теоремы Вариньона.

Пьер Вариньон – французский математик и механик 18 века, который первым доказал, что середины сторон выпуклого четырехугольника являются вершинами параллелограмма. Эта теорема вызвала интерес у отечественных ученых лишь в 20 веке. Подробно ее применение показал украинский геометр – Г.Б.Филипповский и кандидат физико-математических наук, доцент МГУ В.В. Вавилов. В школе теорема Вариньона не входит в курс программы, но считаю изучение её необходимым.

1. Теоретическая часть

Вариньон Пьер [1] (1654–1722)

Пьер Вариньон родился во Франции в 1654 году. Обучался в иезуитском коллеже и университете в Кане, где стал магистром в 1682 году. Вариньон готовился к религиозной деятельности, но, изучая сочинения Эвклида и Декарта, увлекся математикой и механикой. Труды Вариньона посвящены теоретической механике, анализу бесконечно малых, геометрии, гидромеханике и физике. Вариньон был одним из первых ученых, ознакомивших Францию с анализом бесконечно малых. В конце 17 и начале 18 в. Вариньон руководил «Журналом ученых», в котором помещали свои работы по исчислению бесконечно малых братья Бернулли. В геометрии Вариньон изучал различные специальные кривые, в частности ввел термин «логарифмическая спираль». Главные заслуги Вариньона относятся к теоретической механике, а именно к геометрической статике. В 1687 Вариньон представил в Парижскую АН сочинение «Проект новой механики. », в котором сформулировал закон параллелограмма сил. В 1725 в Париже был издан трактат Вариньона «Новая механика или статика», представляющий собой систематическое изложение учения о сложении и разложении сил, о моментах сил и правилах оперирования ими, почти без изменений сохранившееся в учебниках статики до нашего времени. Написал учебник по элементарной геометрии (издан в 1731).

Теорема Вариньона [2]

Четырехугольник, образованный путем последовательного соединения середин сторон выпуклого четырехугольника, является параллелограммом, и его площадь равна половине площади данного четырехугольника.

ABCD – выпуклый четырехугольник

AK=KB; BL=LC; CM=MD; AN=ND

1) KLMN – параллелограмм;

  1. Рассмотрим одну из сторон четырехугольника KLMN, например KL. KL средняя линия треугольника ABC(по определению),следовательно, KLAC. Аналогично, так как MN средняя линия треугольника ADC,то MNAC. Так как KLAC и MNAC следовательно, KLNM и KL=MN=AC/2. Таким образом, KLMN – параллелограмм. Этот параллелограмм называется параллелограммом Вариньона данного четырехугольника.
  2. Средняя линия треугольника отсекает от него треугольник, площадь которого в четыре раза меньше площади исходного треугольника,
  3. т.е. SKBL = SABC/4, SMDN=SADS/4. Следовательно, S1+S3=SABCD /4. Аналогично, S2+S4=SABCD/4. Следовательно, S1+S3 + S2+S4 = SABCD /4 + SABCD/4 = SABCD/2.

Т.е., SKLMN = SABCD/2. Что и требовалось доказать.

Определение. Бимедианы четырехугольниках [3] – это отрезки, соединяющие середины противоположных сторон (диагонали параллелограмма Вариньона)

Докажите что четырехугольник klmn параллелограмм

Следствия из теоремы Вариньона

Параллелограмм Вариньона является ромбом тогда и только тогда, когда в исходном четырехугольнике 1) диагонали равны 2) бимедианы перпендикулярны.

Докажите что четырехугольник klmn параллелограмм

Доказать: KLMN – ромб

Так как AC=BD (диагонали исходного четырехугольника равны по условию), то стороны параллелограмма Вариньона будут равны KL=LM=MN=NK (используя свойство средних линий треугольников, образованных при пересечении диагоналей исходного четырехугольника). Параллелограмм c равными сторонами является ромбом.

Докажите что четырехугольник klmn параллелограмм

KLMN – параллелограмм Вариньона;

KM и LN перпендикулярны

Бимедианы исходного четырехугольника – это диагонали параллелограмма Вариньона. Так как в параллелограмме диагонали перпендикулярны, то этот параллелограмм является ромбом (по признаку ромба).

Что и требовалось доказать.

Параллелограмм Вариньона является прямоугольником тогда и только тогда, когда в исходном четырехугольнике: 1) диагонали перпендикулярны; 2) бимедианы равны

Докажите что четырехугольник klmn параллелограмм

KLMN – параллелограмм Вариньона;

диагонали AC и BD – перпендикулярны

Так как диагонали AC и BD – перпендикулярны, то стороны параллелограмма Вариньона будут перпендикулярны. Следовательно, параллелограмм Вариньона является прямоугольником.

Докажите что четырехугольник klmn параллелограмм

KLMN – параллелограмм Вариньона;

бимедианы KM и LN – равны

Бимедианы исходного четырехугольника – это диагонали параллелограмма Вариньона. Так как в параллелограмме диагонали равны, то этот параллелограмм является прямоугольником (по признаку прямоугольника).

Что и требовалось доказать.

Параллелограмм Вариньона является квадратом тогда и только тогда, когда в исходном четырехугольнике 1) диагонали равны и перпендикулярны; 2) бимедианы равны и перпендикулярны

Докажите что четырехугольник klmn параллелограмм

KLMN – параллелограмм Вариньона;

диагонали AC и BD – перпендикулярны; AC=BD

Так как диагонали исходного четырехугольника AC и BD равны и перпендикулярны, то стороны параллелограмма Вариньона будут равны и перпендикулярны. Следовательно, параллелограмм Вариньона является квадратом.

Докажите что четырехугольник klmn параллелограмм

KLMN – параллелограмм Вариньона;

бимедианы KM и LN – перпендикулярны; KM=LN

Доказать: KLMN – квадрат

Бимедианы исходного четырехугольника – это диагонали параллелограмма Вариньона. Так как в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм является квадратом (по признаку квадрата).

Что и требовалось доказать.

2. Практическая часть. Решение задач.

Докажите, что а) середины сторон прямоугольника являются вершинами ромба. И наоборот, б) середины сторон ромба являются вершинами прямоугольника.

а) Диагонали прямоугольника равны, поэтому середины сторон прямоугольника являются вершинами ромба (см. следствие 1);

Стороны прямоугольника перпендикулярны, поэтому бимедианы перпендикулярны, тогда середины сторон прямоугольника являются вершинами ромба (см. следствие 1).

б) диагонали ромба перпендикулярны, поэтому середины сторон ромба являются вершинами прямоугольника (см. следствие 2);

Стороны ромба равны, поэтому середины сторон ромба являются вершинами прямоугольника (см. следствие 2).

У четырехугольника диагонали равны aи b. Найдите периметр четырехугольника, вершинами которого являются середины сторон данного четырехугольника.

Периметр параллелограмма Вариньона равен a+b.

Докажите, что середины сторон четырехугольника являются вершинами параллелограмма.

См. теорему Вариньона.

Докажите, что средние линии четырехугольника делятся точкой пересечения пополам.

Т.к. средние линии четырехугольника являются диагоналями параллелограмма Вариньона, то точка пересечения делит их пополам.

Олимпиадные задачи

1. Докажите, что если диагонали четырехугольника равны, то его площадь равна произведению средних линий [5].

Докажите что четырехугольник klmn параллелограмм

Доказать: SABCD= KM*LN

Так как диагонали AC = BD, параллелограмм Вариньона является ромбом, площадь ромба равна половине произведения его диагоналей.

Что и требовалось доказать.

2. Докажите, что суммы площадей накрест лежащих четырехугольников, образованных пересечением бимедиан LN и KM выпуклого четырехугольника ABCD равны [6].

Докажите что четырехугольник klmn параллелограмм

Воспользуемся теоремой о средней линии треугольника.

Что и требовалось доказать.

Заключение

«Нет ничего нового под солнцем, но есть кое-что старое, чего мы не знаем», – сказал американский литератор Лоренс Питер.

Пьер Вариньон жил в 18 веке, но теорема Вариньона как нельзя актуальна именно в наши дни, когда чтобы всё успеть, необходимо гораздо больше, чем 24 часа в сутки.

Поэтому была поставлена цель: изучить теорему Вариньона и научиться применять ее на практике с наименьшими временными затратами.

Для этого был разобран весь теоретический материал, решены задачи базового уровня, а также повышенной сложности (олимпиадные). Было подсчитано, что на решение задачи традиционным способом затрачивается 15-20 минут, а зная теорему Вариньона и следствия из нее, доказательство сводится к одному-двум предложениям и занимает 1-2 минуты. При этом экономия времени на доказательство в среднем составляет 15 минут. Таким образом, уже даже решение трех задач добавит дополнительные сорок пять минут (т.е. целый урок) на доказательство других, более сложных.

От этого повышается не только интерес к изучению данного предмета, но и сам процесс работы приносит удовлетворение. Цель работы считаю достигнутой.

🌟 Видео

№950. Докажите, что четырехугольник MNPQ является параллелограммом,Скачать

№950. Докажите, что четырехугольник MNPQ является параллелограммом,

Задание 25 Доказать, что четырёхугольник параллелограмм Определение параллелограммаСкачать

Задание 25 Доказать, что четырёхугольник параллелограмм  Определение параллелограмма

Геометрия Четырехугольник ABCD и AMKD – параллелограммы (см. рис.). Докажите, что четырехугольникСкачать

Геометрия Четырехугольник ABCD и AMKD – параллелограммы (см. рис.). Докажите, что четырехугольник

№371. Докажите, что выпуклый четырехугольник ABCD является параллелограммом,Скачать

№371. Докажите, что выпуклый четырехугольник ABCD является параллелограммом,

Доказательство первого признака параллелограммаСкачать

Доказательство первого признака параллелограмма

Геометрия На рисунке четырехугольник ABCD – параллелограмм, угол BEC = углу DFA. Докажите, чтоСкачать

Геометрия На рисунке четырехугольник ABCD – параллелограмм, угол BEC = углу DFA. Докажите, что

№430. Докажите, что выпуклый четырехугольник является параллелограммом, если его противоположныеСкачать

№430. Докажите, что выпуклый четырехугольник является параллелограммом, если его противоположные

№400. Докажите, что если в четырехугольнике все углы прямые, то четырехугольник — прямоугольник.Скачать

№400. Докажите, что если в четырехугольнике все углы прямые, то четырехугольник — прямоугольник.

Геометрия 8 класс. Параллелограмм, свойства параллелограммаСкачать

Геометрия 8 класс. Параллелограмм, свойства параллелограмма

8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

8 класс, 5 урок, Признаки параллелограммаСкачать

8 класс, 5 урок, Признаки параллелограмма

Геометрия На рисунке четырех угольник ABCD – параллелограмм, угол BCP = углу DAE. Докажите, чтоСкачать

Геометрия На рисунке четырех угольник ABCD – параллелограмм,  угол BCP = углу DAE. Докажите, что

Признаки параллелограмма Доказательство признаков параллелограммаСкачать

Признаки параллелограмма Доказательство признаков параллелограмма

Параллелограмм. Практическая часть - решение задачи. 8 класс.Скачать

Параллелограмм. Практическая часть - решение задачи. 8 класс.

Параллелограмм. Практическая часть - решение задачи. 8 класс.Скачать

Параллелограмм. Практическая часть - решение задачи. 8 класс.

Признаки параллелограмма. 8 класс.Скачать

Признаки параллелограмма. 8 класс.
Поделиться или сохранить к себе:
Докажите что четырехугольник klmn параллелограмм