Доказать что векторы на одной плоскости

Компланарные векторы, исследование системы векторов на компланарность.

В этой статье мы поговорим о компланарности векторов. Сначала вспомним определение компланарности и получим необходимое и достаточное условие компланарности трех векторов в трехмерном пространстве. Далее разберемся с задачей исследования системы из n векторов на компланарность, рассмотрим решения характерных примеров.

Навигация по странице.

Видео:Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?Скачать

Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?

Необходимое и достаточное условие компланарности трех векторов.

Напомним определение компланарных векторов.

Векторы называются компланарными, если они принадлежат одной или параллельным плоскостям.

Два вектора Доказать что векторы на одной плоскостии Доказать что векторы на одной плоскоститрехмерного пространства всегда компланарны. Это утверждение легко доказать. Пусть a и b – прямые, на которых лежат векторы Доказать что векторы на одной плоскостии Доказать что векторы на одной плоскостисоответственно. Проведем через начало вектора Доказать что векторы на одной плоскостипрямую b1 , параллельную прямой b , а через начало вектора Доказать что векторы на одной плоскостипрямую a1 , праллельную прямой a . Плоскости, образуемые прямыми a и b1 , а так же прямыми b и a1 , параллельны по построению, а векторы Доказать что векторы на одной плоскостии Доказать что векторы на одной плоскостипринадлежат им. Следовательно, векторы Доказать что векторы на одной плоскостии Доказать что векторы на одной плоскостикомпланарны.

А как же определить, являются ли три вектора компланарными?

Для этого существует необходимое и достаточное условие компланарности трех векторов в пространстве. Оно основано на понятии смешанного произведения векторов. Сформулируем его в виде теоремы.

Для компланарности трех векторов Доказать что векторы на одной плоскостии Доказать что векторы на одной плоскоститрехмерного пространства необходимо и достаточно, чтобы их смешанное произведение равнялось нулю.

Пусть Доказать что векторы на одной плоскости, докажем что векторы Доказать что векторы на одной плоскостии Доказать что векторы на одной плоскостикомпланарны.

Так как Доказать что векторы на одной плоскости, то векторы Доказать что векторы на одной плоскостии Доказать что векторы на одной плоскостиперпендикулярны в силу необходимого и достаточного условия перпендикулярности двух векторов. С другой стороны, по определению векторного произведения вектор Доказать что векторы на одной плоскостиперпендикулярен и вектору Доказать что векторы на одной плоскостии вектору Доказать что векторы на одной плоскости. Следовательно, векторы Доказать что векторы на одной плоскостии Доказать что векторы на одной плоскостикомпланарны, так как перпендикулярны одному вектору Доказать что векторы на одной плоскости.

Пусть теперь векторы Доказать что векторы на одной плоскостии Доказать что векторы на одной плоскостикомпланарны, докажем равенство нулю смешанного произведения Доказать что векторы на одной плоскости.

Так как векторы Доказать что векторы на одной плоскостии Доказать что векторы на одной плоскостикомпланарны, то вектор Доказать что векторы на одной плоскостиперпендикулярен каждому из них, следовательно, скалярное произведение вектора Доказать что векторы на одной плоскостина Доказать что векторы на одной плоскостиравно нулю, что означает равенство нулю смешанного произведения Доказать что векторы на одной плоскости.

Итак, теорема полностью доказана.

Покажем применение доказанного условия компланарности трех векторов к решению задач.

Компланарны ли векторы Доказать что векторы на одной плоскости, заданные в прямоугольной системе координат.

Вычислим их смешанное произведение по координатам:
Доказать что векторы на одной плоскости

Так как мы получили ноль, то условие компланарности выполнено, следовательно, заданные векторы компланарны.

Необходимое и достаточное условие компланарности векторов можно использовать для проверки принадлежности четырех точек пространства А, В, С и D одной плоскости. Для этого находим координаты векторов Доказать что векторы на одной плоскостии вычисляем их смешанное произведение. Если оно равно нулю, то точки лежат в одной плоскости, в противном случае – не лежат в одной плоскости.

Принадлежат ли точки Доказать что векторы на одной плоскостиодной плоскости?

Найдем координаты векторов Доказать что векторы на одной плоскости(при необходимости смотрите статью нахождение координат вектора по координатам точек его начала и конца):
Доказать что векторы на одной плоскости

Теперь вычисляем смешанное произведение этих векторов
Доказать что векторы на одной плоскости

Так как смешанное произведение векторов отлично от нуля, то векторы Доказать что векторы на одной плоскостине компланарны, следовательно, точки А, В, С и D не лежат в одной плоскости.

Видео:Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Исследование системы векторов на компланарность, примеры и решения.

А как же быть, если требуется установить компланарность системы векторов, число векторов которой больше трех?

Давайте ответим на этот вопрос и получим условие компланарности системы из n векторов трехмерного пространства.

В предыдущем пункте мы показали, что для компланарности трех векторов Доказать что векторы на одной плоскостии Доказать что векторы на одной плоскостинеобходимо и достаточно равенство нулю их смешанного произведения: Доказать что векторы на одной плоскости. Так как смешанное произведение трех векторов в координатной форме представляет собой определитель матрицы, строками которой являются координаты векторов Доказать что векторы на одной плоскостии Доказать что векторы на одной плоскости, то условие компланарности можно записать в виде Доказать что векторы на одной плоскости. Вспомнив понятие ранга матрицы, последнее равенство можно интерпретировать следующим образом: ранг матрицы, строками которой являются координаты компланарных векторов Доказать что векторы на одной плоскостии Доказать что векторы на одной плоскости, меньше трех.

Обобщив последнее утверждение, мы получим необходимое и достаточное условие компланарности системы из n векторов трехмерного пространства: для компланарности системы из n векторов трехмерного пространства необходимо и достаточно, чтобы ранг матрицы, строками которой являются координаты векторов системы, был меньше трех.

Компланарны ли векторы
Доказать что векторы на одной плоскости

Составим матрицу, строками которой примем координаты данных векторов
Доказать что векторы на одной плоскости

Сразу легко отыскать минор второго порядка, отличный от нуля, Доказать что векторы на одной плоскости.

Переберем окаймляющие его миноры третьего порядка:
Доказать что векторы на одной плоскости

Все они равны нулю, следовательно, ранг матрицы равен двум, поэтому, векторы заданной системы векторов компланарны в силу выполнения необходимого и достаточного условия компланарности.

Видео:Доказать, что точки лежат в одной плоскости - bezbotvyСкачать

Доказать, что точки лежат в одной плоскости - bezbotvy

Компланарность векторов. Условия компланарности векторов.

Доказать что векторы на одной плоскости
рис. 1

Всегда возможно найти плоскости параллельную двум произвольным векторам, по этому любые два вектора всегда компланарные.

Видео:Как разложить вектор по базису - bezbotvyСкачать

Как разложить вектор по базису - bezbotvy

Условия компланарности векторов

Видео:Как проверить лежат ли 4 точки в одной плоскости Аналитическая геометрияСкачать

Как проверить лежат ли 4 точки в одной плоскости  Аналитическая геометрия

Примеры задач на компланарность векторов

Решение: найдем смешанное произведение векторов

a · [ b × с ] =123=
111
121

= 1·1·1 + 1·1·2 + 1·2·3 — 1·1·3 — 1·1·2 — 1·1·2 = 1 + 2 + 6 — 3 — 2 — 2 = 2

Ответ: вектора не компланарны так, как их смешанное произведение не равно нулю.

Решение: найдем смешанное произведение векторов

a · [ b × с ] =111=
131
222

= 1·2·3 + 1·1·2 + 1·1·2 — 1·2·3 — 1·1·2 — 1·1·2 = 6 + 2 + 2 — 6 — 2 — 2 = 0

Ответ: вектора компланарны так, как их смешанное произведение равно нулю.

Решение: найдем количество линейно независимых векторов, для этого запишем значения векторов в матрицу, и выполним над ней элементарные преобразования

Доказать что векторы на одной плоскости111Доказать что векторы на одной плоскости
120
0-11
333

из 2-рой строки вычтем 1-вую; из 4-той строки вычтем 1-вую умноженную на 3

Доказать что векторы на одной плоскости111Доказать что векторы на одной плоскостиДоказать что векторы на одной плоскости111Доказать что векторы на одной плоскости1 — 12 — 10 — 101-10-110-113 — 33 — 33 — 3000

к 3-тей строке добавим 2-рую

Доказать что векторы на одной плоскости111Доказать что векторы на одной плоскости

Доказать что векторы на одной плоскости111Доказать что векторы на одной плоскости01-101-10 + 0-1 + 11 + (-1)0003 — 33 — 33 — 3000

Так как осталось две ненулевые строки, то среди приведенных векторов лишь два линейно независимых вектора.

Ответ: вектора компланарны так, как среди приведенных векторов лишь два линейно независимых вектора.

Видео:Образуют ли данные векторы базисСкачать

Образуют ли данные векторы базис

Компланарные векторы и условие компланарности

В данной статье мы рассмотрим такие темы, как:

  • определение компланарных векторов;
  • условия компланарности векторов;
  • примеры задач на компланарность векторов.

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Определение компланарных векторов

Компланарные векторы — это векторы, которые параллельны одной плоскости или лежат на одной плоскости.

Два любых вектора всегда компланарны, поскольку всегда можно найти плоскости параллельные 2-м произвольным векторам.

Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Условия компланарности векторов

  • Для 3-х векторов выполняется условие: если смешанное произведение 3-х векторов равно нулю, то эти три вектора компланарны.
  • Для 3-х векторов выполняется условие: если три вектора линейно зависимы, то они компланарны.
  • Для n-векторов выполняется условие: если среди векторов не более 2-х линейно независимых векторов, то они компланарны.

Примеры решения задач на компланарность векторов

Исследуем на компланарность векторы

a ¯ = ( 1 ; 2 ; 3 ) , b = ( 1 ; 1 ; 1 ) и c ¯ = ( 1 ; 2 ; 1 )

Как решить?

Векторы будут являться компланарными, если их смешанное произведение равно нулю, поэтому вычисляем смешанное произведение заданных векторов. Для этого составляем определитель, по строкам которого записываются координаты векторов-сомножителей:

( a ¯ , b ¯ , c ¯ ) = 1 2 3 1 1 1 1 2 1 = = 1 × 1 × 1 + 1 × 2 × 3 + 2 × 1 × 1 — 1 × 1 × 3 — 2 × 1 × 1 — 1 × 2 × 1 = 2 ≠ 0

Отсюда следует, что смешанное произведение не равняется нулю, поэтому векторы не являются компланарными.

Ответ: векторы не являются компланарными.

Докажем, что три вектора

a ¯ = ( 1 ; — 1 ; 2 ) , b = ( 0 ; 1 ; — 1 ) и c ¯ = ( 2 ; — 2 ; 4 ) компланарны.

Как решить?

Находим смешанное произведение данных векторов:

( a ¯ , b ¯ , c ¯ ) = 1 — 1 2 0 1 — 1 2 — 2 4 = = 1 × 1 × 4 + 0 × ( — 2 ) × 2 + ( — 1 ) × ( — 1 ) × × 2 — 2 × 1 × 2 — ( — 2 ) × ( — 1 ) × 1 — 0 × ( — 1 )

Из данного примера видно, что смешанное произведение равняется нулю.

Ответ: векторы являются компланарными.

Проверим, компланарны ли векторы

Как решить?

Необходимо найти количество линейно независимых векторов: записываем значения векторов в матрицу и выполняем элементарные преобразования:

1 1 1 1 2 0 0 — 1 1 3 3 3

Из 2-ой строки вычитаем 1-ю, из 4-ой вычитаем 1-ю, умноженную на 3:

1 1 1 1 — 1 2 — 1 0 — 1 0 — 1 1 3 — 3 3 — 3 3 — 3

1 1 1 0 1 — 1 0 — 1 1 0 0 0

К 3-ей строке прибавляем 2-ю:

1 1 1 0 1 — 1 0 + 0 — 1 + 1 1 + ( — 1 ) 3 — 3 3 — 3 3 — 3

1 1 1 0 1 — 1 0 0 0 0 0 0

Поскольку в матрице только две ненулевые строки, делаем вывод, что среди них всего два линейно независимых вектора.

Ответ: векторы являются компланарными, поскольку среди них всего два линейно независимых вектора.

🌟 Видео

10 класс, 43 урок, Компланарные векторыСкачать

10 класс, 43 урок, Компланарные векторы

Доказать, что векторы линейно зависимыСкачать

Доказать, что векторы линейно зависимы

Координаты точки и координаты вектора 1.Скачать

Координаты точки и координаты вектора 1.

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Математика без Ху!ни. Смешанное произведение векторовСкачать

Математика без Ху!ни. Смешанное произведение векторов

Разложение вектора по векторам (базису). Аналитическая геометрия-1Скачать

Разложение вектора по векторам (базису). Аналитическая геометрия-1

Векторы в координатной плоскости.Скачать

Векторы в координатной плоскости.

Коллинеарность векторовСкачать

Коллинеарность векторов

Найдите разложение вектора по векторам (базису)Скачать

Найдите разложение вектора по векторам (базису)

9 класс, 1 урок, Разложение вектора по двум неколлинеарным векторамСкачать

9 класс, 1 урок, Разложение вектора по двум неколлинеарным векторам

ГЕОМЕТРИЯ 11 класс: Компланарные векторыСкачать

ГЕОМЕТРИЯ 11  класс: Компланарные векторы

Координаты вектора в пространстве. 11 класс.Скачать

Координаты вектора  в пространстве. 11 класс.
Поделиться или сохранить к себе: