Доказать что два вектора образуют базис на плоскости

Как показать что векторы образуют базис

Даны векторы Доказать что два вектора образуют базис на плоскости. Показать, что векторы Доказать что два вектора образуют базис на плоскостиобразуют базис трехмерного пространства и найти координаты вектора Доказать что два вектора образуют базис на плоскостив этом базисе.

Решение: Сначала разбираемся с условием. По условию даны четыре вектора, и, как видите, у них уже есть координаты в некотором базисе. Какой это базис – нас не интересует. А интересует следующая вещь: три вектора Доказать что два вектора образуют базис на плоскостивполне могут образовывать новый базис. И первый этап полностью совпадает с решением Примера 6, необходимо проверить, действительно ли векторы Доказать что два вектора образуют базис на плоскостилинейно независимы:

Вычислим определитель, составленный из координат векторов Доказать что два вектора образуют базис на плоскости:
Доказать что два вектора образуют базис на плоскости
Доказать что два вектора образуют базис на плоскости, значит, векторы Доказать что два вектора образуют базис на плоскостилинейно независимы и образуют базис трехмерного пространства.

! Важно: координаты векторов Доказать что два вектора образуют базис на плоскостиобязательно записываем в столбцыопределителя, а не в строки. Иначе будет путаница в дальнейшем алгоритме решения.

Теперь вспомним теоретическую часть: если векторы Доказать что два вектора образуют базис на плоскостиобразуют базис, то любой вектор Доказать что два вектора образуют базис на плоскостиможно единственным способом разложить по данному базису: Доказать что два вектора образуют базис на плоскости, где Доказать что два вектора образуют базис на плоскости– координаты вектора в базисе Доказать что два вектора образуют базис на плоскости.

Поскольку наши векторы Доказать что два вектора образуют базис на плоскостиобразуют базис трёхмерного пространства (это уже доказано), то вектор Доказать что два вектора образуют базис на плоскостиможно единственным образом разложить по данному базису:
Доказать что два вектора образуют базис на плоскости, где Доказать что два вектора образуют базис на плоскости– координаты вектора Доказать что два вектора образуют базис на плоскостив базисе Доказать что два вектора образуют базис на плоскости.

По условию и требуется найти координаты Доказать что два вектора образуют базис на плоскости.

Для удобства объяснения поменяю части местами: Доказать что два вектора образуют базис на плоскости. В целях нахождения Доказать что два вектора образуют базис на плоскостиследует расписать данное равенство покоординатно:
Доказать что два вектора образуют базис на плоскости

По какому принципу расставлены коэффициенты? Все коэффициенты левой части в точности перенесены из определителя Доказать что два вектора образуют базис на плоскости, в правую часть записаны координаты вектора Доказать что два вектора образуют базис на плоскости.

Получилась система трёх линейных уравнений с тремя неизвестными. Обычно её решают поформулам Крамера, часто даже в условии задачи есть такое требование.

Главный определитель системы уже найден:
Доказать что два вектора образуют базис на плоскости, значит, система имеет единственное решение.

Дальнейшее – дело техники:
Доказать что два вектора образуют базис на плоскости

Таким образом:
Доказать что два вектора образуют базис на плоскости– разложение вектора Доказать что два вектора образуют базис на плоскостипо базису Доказать что два вектора образуют базис на плоскости.

Ответ: Доказать что два вектора образуют базис на плоскости

Как я уже отмечал, задача носит алгебраический характер. Векторы, которые были рассмотрены – это не обязательно те векторы, которые можно нарисовать в пространстве, а, в первую очередь, абстрактные векторы курса линейной алгебры. Для случая двумерных векторов можно сформулировать и решить аналогичную задачу, решение будет намного проще. Однако на практике мне такое задание ни разу не встречалось, именно поэтому я его пропустил в предыдущем разделе.

Такая же задача с трёхмерными векторами для самостоятельного решения:

Даны векторы Доказать что два вектора образуют базис на плоскости. Показать, что векторы Доказать что два вектора образуют базис на плоскостиобразуют базис и найти координаты вектора Доказать что два вектора образуют базис на плоскостив этом базисе. Систему линейных уравнений решить методом Крамера.

Полное решение и примерный образец чистового оформления в конце урока.

Аналогично можно рассмотреть четырёхмерное, пятимерное и т.д. векторные пространства, где у векторов соответственно 4, 5 и более координат. Для данных векторных пространств тоже существует понятие линейной зависимости, линейной независимости векторов, существует базис, в том числе, ортонормированный, разложение вектора по базису. Да, такие пространства невозможно нарисовать геометрически, но в них работают все правила, свойства и теоремы двух и трех мерных случаев – чистая алгебра. Собственно, о философских вопросах меня уже пробивало поговорить в статье Частные производные функции трёх переменных, которая появилась раньше данного урока.

Любите векторы, и векторы полюбят вас!

Решения и ответы:

Пример 2: Решение: составим пропорцию из соответствующих координат векторов:
Доказать что два вектора образуют базис на плоскости
Ответ: при Доказать что два вектора образуют базис на плоскости

Пример 4: Доказательство: Трапецией называется четырёхугольник, у которого две стороны параллельны, а две другие стороны не параллельны.
1) Проверим параллельность противоположных сторон Доказать что два вектора образуют базис на плоскостии Доказать что два вектора образуют базис на плоскости.
Найдём векторы:
Доказать что два вектора образуют базис на плоскости
Вычислим определитель, составленный из координат векторов Доказать что два вектора образуют базис на плоскости:
Доказать что два вектора образуют базис на плоскости, значит, данные векторы не коллинеарны, и стороны Доказать что два вектора образуют базис на плоскостине параллельны.
2) Проверим параллельность противоположных сторон Доказать что два вектора образуют базис на плоскостии Доказать что два вектора образуют базис на плоскости.
Найдём векторы:
Доказать что два вектора образуют базис на плоскости
Вычислим определитель, составленный из координат векторов Доказать что два вектора образуют базис на плоскости:
Доказать что два вектора образуют базис на плоскости, значит, данные векторы коллинеарны, и Доказать что два вектора образуют базис на плоскости.
Вывод: Две стороны четырёхугольника Доказать что два вектора образуют базис на плоскостипараллельны, а две другие стороны не параллельны, значит, он является трапецией по определению. Что и требовалось доказать.

Пример 5: Решение:
б) Проверим, существует ли коэффициент пропорциональности для соответствующих координат векторов:
Доказать что два вектора образуют базис на плоскости
Система не имеет решения, значит, векторы Доказать что два вектора образуют базис на плоскостине коллинеарны.
Более простое оформление:
Доказать что два вектора образуют базис на плоскости– вторая и третья координаты не пропорциональны, значит, векторы Доказать что два вектора образуют базис на плоскостине коллинеарны.
Ответ: векторы Доказать что два вектора образуют базис на плоскостине коллинеарны.
в) Исследуем на коллинеарность векторы Доказать что два вектора образуют базис на плоскости. Составим систему:
Доказать что два вектора образуют базис на плоскости
Соответствующие координаты векторов пропорциональны, значит Доказать что два вектора образуют базис на плоскости
Вот здесь как раз не проходит «пижонский» метод оформления.
Ответ: Доказать что два вектора образуют базис на плоскости

Пример 6: Решение: б) Вычислим определитель, составленный из координат векторов Доказать что два вектора образуют базис на плоскости(определитель раскрыт по первой строке):
Доказать что два вектора образуют базис на плоскости
Доказать что два вектора образуют базис на плоскости, значит, векторы Доказать что два вектора образуют базис на плоскостилинейно зависимы и не образуют базиса трёхмерного пространства.
Ответ: данные векторы не образуют базиса

Пример 9:Решение:Вычислим определитель, составленный из координат векторов Доказать что два вектора образуют базис на плоскости:
Доказать что два вектора образуют базис на плоскости
Таким образом, векторы Доказать что два вектора образуют базис на плоскостилинейно независимы и образуют базис.
Представим вектор Доказать что два вектора образуют базис на плоскостив виде линейной комбинации базисных векторов:
Доказать что два вектора образуют базис на плоскости
Покоординатно:
Доказать что два вектора образуют базис на плоскости
Систему решим по формулам Крамера:
Доказать что два вектора образуют базис на плоскости, значит, система имеет единственное решение.
Доказать что два вектора образуют базис на плоскости

Ответ: Векторы Доказать что два вектора образуют базис на плоскостиобразуют базис, Доказать что два вектора образуют базис на плоскости

Автор: Емелин Александр

Высшая математика для заочников и не только >>>

(Переход на главную страницу)

Как можно отблагодарить автора?

Векторное произведение векторов.
Смешанное произведение векторов

На данном уроке мы рассмотрим ещё две операции с векторами: векторное произведение векторов и смешанное произведение векторов. Ничего страшного, так иногда бывает, что для полного счастья, помимо скалярного произведения векторов, требуется ещё и ещё. Такая вот векторная наркомания. Может сложиться впечатление, что мы залезаем в дебри аналитической геометрии. Это не так. В данном разделе высшей математики вообще мало дров, разве что на Буратино хватит. На самом деле материал очень распространенный и простой – вряд ли сложнее, чем то же скалярное произведение, даже типовых задач поменьше будет. Главное в аналитической геометрии, как многие убедятся или уже убедились, НЕ ОШИБАТЬСЯ В ВЫЧИСЛЕНИЯХ. Повторяйте как заклинание, и будет вам счастье =)

Если векторы сверкают где-то далеко, как молнии на горизонте, не беда, начните с урокаВекторы для чайников, чтобы восстановить или вновь приобрести базовые знания о векторах. Более подготовленные читатели могут знакомиться с информацией выборочно, я постарался собрать максимально полную коллекцию примеров, которые часто встречаются в практических работах

Чем вас сразу порадовать? Когда я был маленьким, то умел жонглировать двумя и даже тремя шариками. Ловко получалось. Сейчас жонглировать не придётся вообще, поскольку мы будем рассматривать только пространственные векторы, а плоские векторы с двумя координатами останутся за бортом. Почему? Такими уж родились данные действия – векторное и смешанное произведение векторов определены и работают в трёхмерном пространстве. Уже проще!

Этот онлайн калькулятор позволит вам очень просто проверить образует ли заданый набор векторов базис (проверить линейную независимость векторов).

Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на определение образует ли заданый набор векторов базис и закрепить пройденый материал.

Видео:Образуют ли данные векторы базисСкачать

Образуют ли данные векторы базис

Калькулятор для проверки образуют ли вектора базис (проверить линейную независимость векторов)

Выберите размерность пространства

Количество координат в векторе:

Введите значение векторов:

Инструкция использования калькулятора для проверки образуют ли вектора базис (проверки линейной независимости векторов)

  • Для того чтобы проверить образуют ли вектора базис (проверить линейную независимость векторов) онлайн:
  • выберите необходимую вам размерность пространства;
  • введите значение векторов;
  • Нажмите кнопку «Проверить образуют ли вектора базис» и вы получите детальное решение задачи.

Ввод данных в калькулятор для проверки образуют ли вектора базис (проверить линейную независимость векторов)

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора проверки образуют ли вектора базис (проверить линейную независимость векторов)

  • Между полями для ввода можно перемещаться нажимая клавиши «влево» и «вправо» на клавиатуре.

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Администратор
Роман

Tel. +380685083397
[email protected]
skype, facebook:
roman.yukhym

Доказать что два вектора образуют базис на плоскости

Решение задач
Андрей

facebook:
dniprovets25

Видео:Как разложить вектор по базису - bezbotvyСкачать

Как разложить вектор по базису - bezbotvy

34. Базис векторов на плоскости

Множество V2 векторов фиксированной плоскости образует векторное пространство.

Теорема 3. Любая упорядоченная система двух неколлинеарных векторов A, B V2 образуют базис векторного пространства V2.

Доказательство. Пусть A и B неколлинеарные вектора плоскости. По следствию 2 теоремы 2 векторы A и B образует линейно независимую систему. Пусть С V2. Отложим векторы A, B и С от точки O: A = Доказать что два вектора образуют базис на плоскости, B = Доказать что два вектора образуют базис на плоскостиИ С = Доказать что два вектора образуют базис на плоскости(см. рис. 17). Проведем через точку C прямую L, параллельную прямой OB. Так как векторы A и B неколлинеарны, то прямые OA И L пересекаются в точке D. Тогда Доказать что два вектора образуют базис на плоскости=Доказать что два вектора образуют базис на плоскости+Доказать что два вектора образуют базис на плоскости. Так как векторы Доказать что два вектора образуют базис на плоскостиИ Доказать что два вектора образуют базис на плоскостиСоответственно коллинеарны векторам A и B, то по свойству линейной зависимости они соответственно линейно выражается через векторы A и B: Доказать что два вектора образуют базис на плоскости=a a, Доказать что два вектора образуют базис на плоскости=b b. Поэтому с = Доказать что два вектора образуют базис на плоскости= a a + b b, и по определению 1 вектора A и B образует базис пространства V2.

По теореме 3 базис векторов на плоскости образуют любые два неколлинеарные вектора, поэтому любой вектор на плоскости имеет две координаты. Тогда справедливо следующее утверждение.

Следствие 1. Вектора A = (a1, b1), B = (a2, b2) Образуют базис векторов плоскости тогда и только тогда, когда

Доказать что два вектора образуют базис на плоскости= 0.

Теорема 4. Векторы A, B и С Компланарны тогда только тогда, когда они линейно зависимы.

Доказательство. Пусть вектора A, B и С Компланарны. По определению они могут быть изображены на одной плоскости p. Если вектора A, B коллинеарны, то по следствию 1 теоремы 2 они линейно зависимы.

Доказать что два вектора образуют базис на плоскости

Тогда по свойству по свойству линейной зависимости вектора A, B, С линейно зависимы. Если вектора A, B неколлинеарны, то по теореме 3 они образуют базис векторов плоскости p. Тогда вектор С линейная комбинация векторов A, B, и по свойству линейной зависимости векторы A, B, С линейно зависимы.

Обратно, если векторы A, B, С линейно зависимы, то по свойству линейной зависимости, один из этих векторов линейно выражается через два другие. Тогда вектора могут быть изображены одной плоскости и поэтому Коллинеарны.

Следствие 1. Векторы A, B и С Некомпланарны тогда только тогда, когда они линейно независимы.

Видео:Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Векторное пространство: размерность и базис, разложение вектора по базису

В статье о n -мерных векторах мы пришли к понятию линейного пространства, порождаемого множеством n -мерных векторов. Теперь нам предстоит рассмотреть не менее важные понятия, такие как размерность и базис векторного пространства. Они напрямую связаны с понятием линейно независимой системы векторов, так что дополнительно рекомендуется напомнить себе основы и этой темы.

Введем некоторые определения.

Размерность векторного пространства – число, соответствующее максимальному количеству линейно независимых векторов в этом пространстве.

Базис векторного пространства – совокупность линейно независимых векторов, упорядоченная и в своей численности равная размерности пространства.

Рассмотрим некое пространство n -векторов. Размерность его соответственно равна n . Возьмем систему из n -единичных векторов:

e ( 1 ) = ( 1 , 0 , . . . , 0 ) e ( 2 ) = ( 0 , 1 , . . . , 0 ) e ( n ) = ( 0 , 0 , . . . , 1 )

Используем эти векторы в качестве составляющих матрицы A : она будет являться единичной с размерностью n на n . Ранг этой матрицы равен n . Следовательно, векторная система e ( 1 ) , e ( 2 ) , . . . , e ( n ) является линейно независимой. При этом к системе невозможно добавить ни одного вектора, не нарушив ее линейной независимости.

Так как число векторов в системе равно n , то размерность пространства n -мерных векторов равна n , а единичные векторы e ( 1 ) , e ( 2 ) , . . . , e ( n ) являются базисом указанного пространства.

Из полученного определения сделаем вывод: любая система n -мерных векторов, в которой число векторов меньше n , не является базисом пространства.

Если мы поменяем местами первый и второй вектор, получим систему векторов e ( 2 ) , e ( 1 ) , . . . , e ( n ) . Она также будет являться базисом n -мерного векторного пространства. Составим матрицу, взяв за ее строки векторы полученной системы. Матрица может быть получена из единичной матрицы перестановкой местами первых двух строк, ранг ее будет равен n . Система e ( 2 ) , e ( 1 ) , . . . , e ( n ) линейно независима и является базисом n -мерного векторного пространства.

Переставив местами в исходной системе другие векторы, получим еще один базис.

Мы можем взять линейно независимую систему неединичных векторов, и она также будет представлять собой базис n -мерного векторного пространства.

Векторное пространство с размерностью n имеет столько базисов, сколько существует линейно независимых систем из n -мерных векторов числом n.

Плоскость является двумерным пространством – ее базисом будут два любых неколлинеарных вектора. Базисом трехмерного пространства послужат три любых некомпланарных вектора.

Рассмотрим применение данной теории на конкретных примерах.

Исходные данные: векторы

a = ( 3 , — 2 , 1 ) b = ( 2 , 1 , 2 ) c = ( 3 , — 1 , — 2 )

Необходимо определить, являются ли указанные векторы базисом трехмерного векторного пространства.

Решение

Для решения поставленной задачи исследуем заданную систему векторов на линейную зависимость. Составим матрицу, где строки – координаты векторов. Определим ранг матрицы.

A = 3 2 3 — 2 1 — 1 1 2 — 2 A = 3 — 2 1 2 1 2 3 — 1 — 2 = 3 · 1 · ( — 2 ) + ( — 2 ) · 2 · 3 + 1 · 2 · ( — 1 ) — 1 · 1 · 3 — ( — 2 ) · 2 · ( — 2 ) — 3 · 2 · ( — 1 ) = = — 25 ≠ 0 ⇒ R a n k ( A ) = 3

Следовательно, заданные условием задачи векторы линейно независимы, и их численность равна размерности векторного пространства – они являются базисом векторного пространства.

Ответ: указанные векторы являются базисом векторного пространства.

Исходные данные: векторы

a = ( 3 , — 2 , 1 ) b = ( 2 , 1 , 2 ) c = ( 3 , — 1 , — 2 ) d = ( 0 , 1 , 2 )

Необходимо определить, может ли указанная система векторов являться базисом трехмерного пространства.

Решение

Указанная в условии задачи система векторов является линейно зависимой, т.к. максимальное число линейно независимых векторов равно 3. Таким образом, указанная система векторов не может служить базисом трехмерного векторного пространства. Но стоит отметить, что подсистема исходной системы a = ( 3 , — 2 , 1 ) , b = ( 2 , 1 , 2 ) , c = ( 3 , — 1 , — 2 ) является базисом.

Ответ: указанная система векторов не является базисом.

Исходные данные: векторы

a = ( 1 , 2 , 3 , 3 ) b = ( 2 , 5 , 6 , 8 ) c = ( 1 , 3 , 2 , 4 ) d = ( 2 , 5 , 4 , 7 )

Могут ли они являться базисом четырехмерного пространства?

Решение

Cоставим матрицу, используя в качестве строк координаты заданных векторов

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7

По методу Гаусса определим ранг матрицы:

A = 1 2 3 3 2 5 6 8 1 3 2 4 2 5 4 7

1 2 3 3 0 1 0 2 0 1 — 1 1 0 1 — 2 1

1 2 3 3 0 1 0 2 0 0 — 1 — 1 0 0 — 2 — 1

1 2 3 3 0 1 0 2 0 0 — 1 — 1 0 0 0 1 ⇒ ⇒ R a n k ( A ) = 4

Следовательно, система заданных векторов линейно независима и их численность равна размерности векторного пространства – они являются базисом четырехмерного векторного пространства.

Ответ: заданные векторы являются базисом четырехмерного пространства.

Исходные данные: векторы

a ( 1 ) = ( 1 , 2 , — 1 , — 2 ) a ( 2 ) = ( 0 , 2 , 1 , — 3 ) a ( 3 ) = ( 1 , 0 , 0 , 5 )

Составляют ли они базис пространства размерностью 4?

Решение

Исходная система векторов линейно независима, но численность векторов в ней недостаточна, чтобы стать базисом четырехмерного пространства.

Ответ: нет, не составляют.

Видео:Высшая математика. Линейные пространства. Векторы. БазисСкачать

Высшая математика. Линейные пространства. Векторы. Базис

Разложение вектора по базису

Примем, что произвольные векторы e ( 1 ) , e ( 2 ) , . . . , e ( n ) являются базисом векторного n-мерного пространства. Добавим к ним некий n -мерный вектор x → : полученная система векторов станет линейно зависимой. Свойства линейной зависимости гласят, что хотя бы один из векторов такой системы может линейно выражаться через остальные. Переформулируя это утверждение, можно говорить о том, что хотя бы один из векторов линейно зависимой системы может раскладываться по остальным векторам.

Таким образом, мы пришли к формулировке важнейшей теоремы:

Любой вектор n -мерного векторного пространства единственным образом раскладывается по базису.

Докажем эту теорему:

зададим базис n -мерного векторного пространства — e ( 1 ) , e ( 2 ) , . . . , e ( n ) . Сделаем систему линейно зависимой, добавив к ней n -мерный вектор x → . Этот вектор может быть линейно выражен через исходные векторы e :

x = x 1 · e ( 1 ) + x 2 · e ( 2 ) + . . . + x n · e ( n ) , где x 1 , x 2 , . . . , x n — некоторые числа.

Теперь докажем, что такое разложение является единственным. Предположим, что это не так и существует еще одно подобное разложение:

Отнимем от левой и правой частей этого равенства соответственно левую и правую части равенства x = x 1 · e ( 1 ) + x 2 · e ( 2 ) + . . . + x n · e ( n ) . Получим:

1 — x 1 ) · e ( 1 ) + ( x

2 — x 2 ) · e ( 2 ) + . . . ( x

Система базисных векторов e ( 1 ) , e ( 2 ) , . . . , e ( n ) линейно независима; по определению линейной независимости системы векторов равенство выше возможно только тогда, когда все коэффициенты ( x

2 — x 2 ) , . . . , ( x

n — x n ) будут равны нулю. Из чего справедливым будет: x 1 = x

n . И это доказывает единственный вариант разложения вектора по базису.

При этом коэффициенты x 1 , x 2 , . . . , x n называются координатами вектора x → в базисе e ( 1 ) , e ( 2 ) , . . . , e ( n ) .

Доказанная теория делает понятным выражение «задан n -мерный вектор x = ( x 1 , x 2 , . . . , x n ) »: рассматривается вектор x → n -мерного векторного пространства, и его координаты заданы в некотором базисе. При этом также понятно, что этот же вектор в другом базисе n -мерного пространства будет иметь другие координаты.

Рассмотрим следующий пример: допустим, что в некотором базисе n -мерного векторного пространства задана система из n линейно независимых векторов

e ( 1 ) = ( e 1 ( 1 ) , e 2 ( 1 ) , . . . , e n ( 1 ) ) e ( 2 ) = ( e 1 ( 2 ) , e 2 ( 2 ) , . . . , e n ( 2 ) ) ⋮ e ( n ) = ( e 1 ( n ) , e 2 ( n ) , . . . , e n ( n ) )

а также задан вектор x = ( x 1 , x 2 , . . . , x n ) .

Векторы e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) в этом случае также являются базисом этого векторного пространства.

Предположим, что необходимо определить координаты вектора x → в базисе e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) , обозначаемые как x

Вектор x → будет представлен следующим образом:

2 · e ( 2 ) + . . . + x

Запишем это выражение в координатной форме:

( x 1 , x 2 , . . . , x n ) = x

1 · ( e ( 1 ) 1 , e ( 1 ) 2 , . . . , e ( 1 ) n ) + x

2 · ( e ( 2 ) 1 , e ( 2 ) 2 , . . . , e ( 2 ) n ) + . . . + + x

n · ( e ( n ) 1 , e ( n ) 2 , . . . , e ( n ) n ) = = ( x

2 e 1 ( 2 ) + . . . + x

2 e 2 ( 2 ) + + . . . + x

n e 2 ( n ) , . . . , x

2 e n ( 2 ) + . . . + x

Полученное равенство равносильно системе из n линейных алгебраических выражений с n неизвестными линейными переменными x

n e 2 n ⋮ x n = x

Матрица этой системы будет иметь следующий вид:

e 1 ( 1 ) e 1 ( 2 ) ⋯ e 1 ( n ) e 2 ( 1 ) e 2 ( 2 ) ⋯ e 2 ( n ) ⋮ ⋮ ⋮ ⋮ e n ( 1 ) e n ( 2 ) ⋯ e n ( n )

Пусть это будет матрица A , и ее столбцы – векторы линейно независимой системы векторов e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) . Ранг матрицы – n , и ее определитель отличен от нуля. Это свидетельствует о том, что система уравнений имеет единственное решение, определяемое любым удобным способом: к примеру, методом Крамера или матричным методом. Таким образом мы сможем определить координаты x

n вектора x → в базисе e 1 ( 1 ) , e 2 ( 2 ) , . . . , e n ( n ) .

Применим рассмотренную теорию на конкретном примере.

Исходные данные: в базисе трехмерного пространства заданы векторы

e ( 1 ) = ( 1 , — 1 , 1 ) e ( 2 ) = ( 3 , 2 , — 5 ) e ( 3 ) = ( 2 , 1 , — 3 ) x = ( 6 , 2 , — 7 )

Необходимо подтвердить факт, что система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) также служит базисом заданного пространства, а также определить координаты вектора х в заданном базисе.

Решение

Система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) будет являться базисом трехмерного пространства, если она линейно независима. Выясним эту возможность, определив ранг матрицы A , строки которой – заданные векторы e ( 1 ) , e ( 2 ) , e ( 3 ) .

Используем метод Гаусса:

A = 1 — 1 1 3 2 — 5 2 1 — 3

1 — 1 1 0 5 — 8 0 3 — 5

1 — 1 1 0 5 — 8 0 0 — 1 5

R a n k ( A ) = 3 . Таким образом, система векторов e ( 1 ) , e ( 2 ) , e ( 3 ) линейно независима и является базисом.

Пусть в базисе вектор x → имеет координаты x

3 . Связь этих координат определяется уравнением:

3 e 1 ( 3 ) x 2 = x

3 e 2 ( 3 ) x 3 = x

Применим значения согласно условиям задачи:

Решим систему уравнений методом Крамера:

∆ = 1 3 2 — 1 2 1 1 — 5 — 3 = — 1 ∆ x

1 = 6 3 2 2 2 1 — 7 — 5 — 3 = — 1 , x

1 ∆ = — 1 — 1 = 1 ∆ x

2 = 1 6 2 — 1 2 1 1 — 7 — 3 = — 1 , x

2 ∆ = — 1 — 1 = 1 ∆ x

3 = 1 3 6 — 1 2 2 1 — 5 — 7 = — 1 , x

Так, вектор x → в базисе e ( 1 ) , e ( 2 ) , e ( 3 ) имеет координаты x

Ответ: x = ( 1 , 1 , 1 )

Видео:Решение, показать, что векторы а, b, с образуют базис, и найти координаты вектора d пример 6Скачать

Решение, показать, что векторы а, b, с образуют базис, и найти координаты вектора d пример 6

Связь между базисами

Предположим, что в некотором базисе n-мерного векторного пространства даны две линейно независимые системы векторов:

c ( 1 ) = ( c 1 ( 1 ) , c 2 ( 1 ) , . . . , c n ( 1 ) ) c ( 2 ) = ( c 1 ( 2 ) , c 2 ( 2 ) , . . . , c n ( 2 ) ) ⋮ c ( n ) = ( c 1 ( n ) , e 2 ( n ) , . . . , c n ( n ) )

e ( 1 ) = ( e 1 ( 1 ) , e 2 ( 1 ) , . . . , e n ( 1 ) ) e ( 2 ) = ( e 1 ( 2 ) , e 2 ( 2 ) , . . . , e n ( 2 ) ) ⋮ e ( n ) = ( e 1 ( n ) , e 2 ( n ) , . . . , e n ( n ) )

Указанные системы являются также базисами заданного пространства.

n ( 1 ) — координаты вектора c ( 1 ) в базисе e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) , тогда связь координат будет задаваться системой линейных уравнений:

1 ( 1 ) e 1 ( 1 ) + c

2 ( 1 ) e 1 ( 2 ) + . . . + c

n ( 1 ) e 1 ( n ) с 2 ( 1 ) = c

1 ( 1 ) e 2 ( 1 ) + c

2 ( 1 ) e 2 ( 2 ) + . . . + c

n ( 1 ) e 2 ( n ) ⋮ с n ( 1 ) = c

1 ( 1 ) e n ( 1 ) + c

2 ( 1 ) e n ( 2 ) + . . . + c

В виде матрицы систему можно отобразить так:

( c 1 ( 1 ) , c 2 ( 1 ) , . . . , c n ( 1 ) ) = ( c

n ( 1 ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

Сделаем по аналогии такую же запись для вектора c ( 2 ) :

( c 1 ( 2 ) , c 2 ( 2 ) , . . . , c n ( 2 ) ) = ( c

n ( 2 ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

И, далее действуя по тому же принципу, получаем:

( c 1 ( n ) , c 2 ( n ) , . . . , c n ( n ) ) = ( c

n ( n ) ) · e 1 ( 1 ) e 2 ( 1 ) … e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) … e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) … e n ( n )

Матричные равенства объединим в одно выражение:

c 1 ( 1 ) c 2 ( 1 ) ⋯ c n ( 1 ) c 1 ( 2 ) c 2 ( 2 ) ⋯ c n ( 2 ) ⋮ ⋮ ⋮ ⋮ c 1 ( n ) c 2 ( n ) ⋯ c n ( n ) = c

n ( n ) · e 1 ( 1 ) e 2 ( 1 ) ⋯ e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) ⋯ e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) ⋯ e n ( n )

Оно и будет определять связь векторов двух различных базисов.

Используя тот же принцип, возможно выразить все векторы базиса e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) через базис c ( 1 ) , c ( 2 ) , . . . , c ( n ) :

e 1 ( 1 ) e 2 ( 1 ) ⋯ e n ( 1 ) e 1 ( 2 ) e 2 ( 2 ) ⋯ e n ( 2 ) ⋮ ⋮ ⋮ ⋮ e 1 ( n ) e 2 ( n ) ⋯ e n ( n ) = e

n ( n ) · c 1 ( 1 ) c 2 ( 1 ) ⋯ c n ( 1 ) c 1 ( 2 ) c 2 ( 2 ) ⋯ c n ( 2 ) ⋮ ⋮ ⋮ ⋮ c 1 ( n ) c 2 ( n ) ⋯ c n ( n )

Дадим следующие определения:

n ( n ) является матрицей перехода от базиса e ( 1 ) , e ( 2 ) , . . . , e ( 3 )

к базису c ( 1 ) , c ( 2 ) , . . . , c ( n ) .

n ( n ) является матрицей перехода от базиса c ( 1 ) , c ( 2 ) , . . . , c ( n )

к базису e ( 1 ) , e ( 2 ) , . . . , e ( 3 ) .

📽️ Видео

Найдите разложение вектора по векторам (базису)Скачать

Найдите разложение вектора по векторам (базису)

Разложение вектора по векторам (базису). Аналитическая геометрия-1Скачать

Разложение вектора по векторам (базису). Аналитическая геометрия-1

Разложение вектора по базису. 9 класс.Скачать

Разложение вектора по базису. 9 класс.

Базис. Разложение вектора по базису.Скачать

Базис. Разложение вектора по базису.

Решение, показать, что векторы а, b, с образуют базис, и найти координаты вектора d пример 8Скачать

Решение, показать, что векторы а, b, с образуют базис, и найти координаты вектора d пример 8

Семинар 3 - Задача 3 (Какие из векторов образуют базис?)Скачать

Семинар 3 - Задача 3 (Какие из векторов образуют базис?)

Решение, показать, что векторы а, b, с образуют базис, и найти координаты вектора d пример 7Скачать

Решение, показать, что векторы а, b, с образуют базис, и найти координаты вектора d пример 7

Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?Скачать

Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.Скачать

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Доказать, что векторы линейно зависимыСкачать

Доказать, что векторы линейно зависимы

Решение, показать, что векторы а, b, с образуют базис, и найти координаты вектора d пример 4Скачать

Решение, показать, что векторы а, b, с образуют базис, и найти координаты вектора d пример 4

Решение, показать, что векторы e1, е2, е3 образуют базис и найти в нем координаты вектора а пример 1Скачать

Решение, показать, что векторы e1, е2, е3 образуют базис и найти в нем координаты вектора а пример 1

Решение убедиться что векторы e1, е2, е3 образуют базис и найти в нем координаты вектора а пример 10Скачать

Решение убедиться что векторы e1, е2, е3 образуют базис и найти в нем координаты вектора а пример 10

Решение, показать, что векторы e1, е2, е3 образуют базис и найти в нем координаты вектора а пример 2Скачать

Решение, показать, что векторы e1, е2, е3 образуют базис и найти в нем координаты вектора а пример 2
Поделиться или сохранить к себе: