Доказать что четырехугольник с вершинами в точках прямоугольник

Докажите, что четырехугольник ABCD с вершинами А (3; -2), В (4; 0), С (2; 1), Л (1; -1) является прямоугольником

Видео:№568. Докажите, что четырехугольник — ромб, если его вершинами являются середины сторон:Скачать

№568. Докажите, что четырехугольник — ромб, если его вершинами являются середины сторон:

Ваш ответ

Видео:№951. Докажите, что четырехугольник ABCD является прямоугольником, и найдите егоСкачать

№951. Докажите, что четырехугольник ABCD является прямоугольником, и найдите его

решение вопроса

Видео:№400. Докажите, что если в четырехугольнике все углы прямые, то четырехугольник — прямоугольник.Скачать

№400. Докажите, что если в четырехугольнике все углы прямые, то четырехугольник — прямоугольник.

Похожие вопросы

  • Все категории
  • экономические 43,277
  • гуманитарные 33,618
  • юридические 17,900
  • школьный раздел 606,688
  • разное 16,822

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!

Доказать что четырехугольник с вершинами в точках прямоугольник

ПОМОГИТЕ РЕШИТЬ СРОЧНО

Докажите, что четырехугольник с вершинами в точках A(-3; -3), B(-4; 4), C(3;5), D(4;-2) является прямоугольником.

Доказать что четырехугольник с вершинами в точках прямоугольник

Для начала можно для себя отобразить эти точки в ортонормированной системе координат и посмотреть, как будет выглядеть этот четырехугольник.
Его стороны — векторы AB, BC, CD и DA. (векторы будем записывать курсивом)
Найдем координаты этих векторов.
Напомню, как находят координаты вектора:
Если у нас есть точки A(x₁; y₁) и B(x₂; y₂), то координаты вектора находят следующим образом: AB = (x₂ — x₁; y₂ — y₁). (1).
В нашем случае: A(-3; -3); B(-4; 4), значит, согласно формуле (1), координаты вектора AB = (-4 — (-3); 4 — (-3)) = (-1; 7).
Для остальных векторов я вычисления так подробно записывать не буду, запишу лишь результат. Если вы захотите проверить, верны ли мои вычисления, вы можете проверить это с помощью формулы (1), как видите, это несложно.
BC = (7; 1);
CD = (1; -7);
DA = (-7; -1).

Напомню признак коллинеарности двух векторов:
Если AB = (x₁; y₁), CD = (x₂; y₂) и при этом выполняется равенство (x₁/x₂) = (y₁/y₂), то AB || CD (AB коллинеарен CD).

Исследуем на коллинеарность наши векторы AB = (-1; 7) и CD = (1; -7):
(-1/1) = (7/-7);
-1 = -1.
Равенство выполняется, значит, AB || CD.
Аналогично исследуем на коллинеарность векторы BC и DA.

Теперь найдем длины этих векторов.
Если AB = (x, y), то его длину можно найти так: |AB| = sqrt(x² + y²).

|AB| = sqrt((-1)² + 7²) = √50;
|BC| = sqrt(7² + 1²) = √50;
|CD| = √50;
|DA| = √50.

Выходит, что в нашем четырехугольнике стороны попарно равны и параллельны, более того — все стороны равны. Отсюда следует, что наш четырехугольник ни что иное, как ромб.

Осталось лишь доказать, что углы, образуемые векторами, прямые. Можно сделать это по-разному, можно найти скалярное произведение векторов, образующих углы, можно воспользоваться методом для извращенцев — найти длину вектора AC и убедиться с помощью теоремы Пифагора, что ΔABC — прямоугольный.

Рассмотрю оба способа:
1) Напомню, как находят скалярное произведение: AB = (x₁; y₁), CD = (x₂; y₂);
(AB, CD) = x₁x₂ + y₁y₂. (2)
Найдем скалярное произведение наших векторов AB и BC с помощью формулы (2):
(AB, BC) = (-1)*7 + 7*1 = 0 — это говорит о том, что векторы перпендикулярны, т.к скалярное произведение можно записать так: (AB, BC) = |AB| * |BC| * cos(AB^BC). Если скалярное произведение равно нулю, то это значит, что либо одна из длин векторов равна нулю, либо косинус угла между векторами равен нулю. В нашем случае длины векторов не равны нулю ⇒ cos (AB^BC) = 0 ⇒ (AB^BC) = 90°.

Для остальных пар векторов делаете аналогично.

2) Найдем длину вектора AC — |AC| = √100.
Проверим, является ли ΔABC прямоугольным с помощью теоремы Пифагора:
(√100)² = (√50)² + (√50)²;
100 = 50 + 50 ⇒ ΔABC — прямоугольный, прямой угол лежит против большей стороны.
Для остальных углов можно это проверить аналогично.

В итоге получается, что наш четырехугольник не только прямоугольник, но и квадрат.
Фух, всё.

Видео:Задание 25 Доказать, что четырёхугольник прямоугольник Определение прямоугольникаСкачать

Задание 25 Доказать, что четырёхугольник прямоугольник  Определение прямоугольника

Урок геометрии по теме «Теорема Вариньона. Решение задач». 8-й класс

Класс: 8

Презентация к уроку

Загрузить презентацию (276 кБ)

Цель: изучить теорему Вариньона и научиться применять ее на практике с наименьшими временными затратами.

Задачи:

  1. Изучить теоретический материал: понятия «параллелограмм Вариньона», бимедианы четырехугольника, разобрать доказательство теоремы Вариньона и следствия из нее.
  2. Сравнить количество времени, необходимое для решения задач традиционным способом и, используя теорему Вариньона.
  3. Показать решение олимпиадных заданий с помощью параллелограмма Вариньона.

Видео:№567. Докажите, что середины сторон произвольного четырехугольника являютсяСкачать

№567. Докажите, что середины сторон произвольного четырехугольника являются

Ход урока

Введение

В 21 век, в век информационных технологий, главным ресурсом является время. Тысячи людей желают посещать тренинги, семинары и лекции по тайм-менеджменту, где бы их научили, как рационально, с минимальными потерями и максимальной пользой использовать свое время. Большую часть времени у ученика занимает обучение в школе и приготовление домашнего задания. Одним из самых сложных предметов в школе является геометрия. В частности, задачи на доказательство требуют значительной траты времени, поэтому у многих отсутствует интерес к решению подобных заданий. В теме «Четырехугольники» эту проблему может решить использование теоремы Вариньона.

Пьер Вариньон – французский математик и механик 18 века, который первым доказал, что середины сторон выпуклого четырехугольника являются вершинами параллелограмма. Эта теорема вызвала интерес у отечественных ученых лишь в 20 веке. Подробно ее применение показал украинский геометр – Г.Б.Филипповский и кандидат физико-математических наук, доцент МГУ В.В. Вавилов. В школе теорема Вариньона не входит в курс программы, но считаю изучение её необходимым.

1. Теоретическая часть

Вариньон Пьер [1] (1654–1722)

Пьер Вариньон родился во Франции в 1654 году. Обучался в иезуитском коллеже и университете в Кане, где стал магистром в 1682 году. Вариньон готовился к религиозной деятельности, но, изучая сочинения Эвклида и Декарта, увлекся математикой и механикой. Труды Вариньона посвящены теоретической механике, анализу бесконечно малых, геометрии, гидромеханике и физике. Вариньон был одним из первых ученых, ознакомивших Францию с анализом бесконечно малых. В конце 17 и начале 18 в. Вариньон руководил «Журналом ученых», в котором помещали свои работы по исчислению бесконечно малых братья Бернулли. В геометрии Вариньон изучал различные специальные кривые, в частности ввел термин «логарифмическая спираль». Главные заслуги Вариньона относятся к теоретической механике, а именно к геометрической статике. В 1687 Вариньон представил в Парижскую АН сочинение «Проект новой механики. », в котором сформулировал закон параллелограмма сил. В 1725 в Париже был издан трактат Вариньона «Новая механика или статика», представляющий собой систематическое изложение учения о сложении и разложении сил, о моментах сил и правилах оперирования ими, почти без изменений сохранившееся в учебниках статики до нашего времени. Написал учебник по элементарной геометрии (издан в 1731).

Теорема Вариньона [2]

Четырехугольник, образованный путем последовательного соединения середин сторон выпуклого четырехугольника, является параллелограммом, и его площадь равна половине площади данного четырехугольника.

ABCD – выпуклый четырехугольник

AK=KB; BL=LC; CM=MD; AN=ND

1) KLMN – параллелограмм;

  1. Рассмотрим одну из сторон четырехугольника KLMN, например KL. KL средняя линия треугольника ABC(по определению),следовательно, KLAC. Аналогично, так как MN средняя линия треугольника ADC,то MNAC. Так как KLAC и MNAC следовательно, KLNM и KL=MN=AC/2. Таким образом, KLMN – параллелограмм. Этот параллелограмм называется параллелограммом Вариньона данного четырехугольника.
  2. Средняя линия треугольника отсекает от него треугольник, площадь которого в четыре раза меньше площади исходного треугольника,
  3. т.е. SKBL = SABC/4, SMDN=SADS/4. Следовательно, S1+S3=SABCD /4. Аналогично, S2+S4=SABCD/4. Следовательно, S1+S3 + S2+S4 = SABCD /4 + SABCD/4 = SABCD/2.

Т.е., SKLMN = SABCD/2. Что и требовалось доказать.

Определение. Бимедианы четырехугольниках [3] – это отрезки, соединяющие середины противоположных сторон (диагонали параллелограмма Вариньона)

Доказать что четырехугольник с вершинами в точках прямоугольник

Следствия из теоремы Вариньона

Параллелограмм Вариньона является ромбом тогда и только тогда, когда в исходном четырехугольнике 1) диагонали равны 2) бимедианы перпендикулярны.

Доказать что четырехугольник с вершинами в точках прямоугольник

Доказать: KLMN – ромб

Так как AC=BD (диагонали исходного четырехугольника равны по условию), то стороны параллелограмма Вариньона будут равны KL=LM=MN=NK (используя свойство средних линий треугольников, образованных при пересечении диагоналей исходного четырехугольника). Параллелограмм c равными сторонами является ромбом.

Доказать что четырехугольник с вершинами в точках прямоугольник

KLMN – параллелограмм Вариньона;

KM и LN перпендикулярны

Бимедианы исходного четырехугольника – это диагонали параллелограмма Вариньона. Так как в параллелограмме диагонали перпендикулярны, то этот параллелограмм является ромбом (по признаку ромба).

Что и требовалось доказать.

Параллелограмм Вариньона является прямоугольником тогда и только тогда, когда в исходном четырехугольнике: 1) диагонали перпендикулярны; 2) бимедианы равны

Доказать что четырехугольник с вершинами в точках прямоугольник

KLMN – параллелограмм Вариньона;

диагонали AC и BD – перпендикулярны

Так как диагонали AC и BD – перпендикулярны, то стороны параллелограмма Вариньона будут перпендикулярны. Следовательно, параллелограмм Вариньона является прямоугольником.

Доказать что четырехугольник с вершинами в точках прямоугольник

KLMN – параллелограмм Вариньона;

бимедианы KM и LN – равны

Бимедианы исходного четырехугольника – это диагонали параллелограмма Вариньона. Так как в параллелограмме диагонали равны, то этот параллелограмм является прямоугольником (по признаку прямоугольника).

Что и требовалось доказать.

Параллелограмм Вариньона является квадратом тогда и только тогда, когда в исходном четырехугольнике 1) диагонали равны и перпендикулярны; 2) бимедианы равны и перпендикулярны

Доказать что четырехугольник с вершинами в точках прямоугольник

KLMN – параллелограмм Вариньона;

диагонали AC и BD – перпендикулярны; AC=BD

Так как диагонали исходного четырехугольника AC и BD равны и перпендикулярны, то стороны параллелограмма Вариньона будут равны и перпендикулярны. Следовательно, параллелограмм Вариньона является квадратом.

Доказать что четырехугольник с вершинами в точках прямоугольник

KLMN – параллелограмм Вариньона;

бимедианы KM и LN – перпендикулярны; KM=LN

Доказать: KLMN – квадрат

Бимедианы исходного четырехугольника – это диагонали параллелограмма Вариньона. Так как в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм является квадратом (по признаку квадрата).

Что и требовалось доказать.

2. Практическая часть. Решение задач.

Докажите, что а) середины сторон прямоугольника являются вершинами ромба. И наоборот, б) середины сторон ромба являются вершинами прямоугольника.

а) Диагонали прямоугольника равны, поэтому середины сторон прямоугольника являются вершинами ромба (см. следствие 1);

Стороны прямоугольника перпендикулярны, поэтому бимедианы перпендикулярны, тогда середины сторон прямоугольника являются вершинами ромба (см. следствие 1).

б) диагонали ромба перпендикулярны, поэтому середины сторон ромба являются вершинами прямоугольника (см. следствие 2);

Стороны ромба равны, поэтому середины сторон ромба являются вершинами прямоугольника (см. следствие 2).

У четырехугольника диагонали равны aи b. Найдите периметр четырехугольника, вершинами которого являются середины сторон данного четырехугольника.

Периметр параллелограмма Вариньона равен a+b.

Докажите, что середины сторон четырехугольника являются вершинами параллелограмма.

См. теорему Вариньона.

Докажите, что средние линии четырехугольника делятся точкой пересечения пополам.

Т.к. средние линии четырехугольника являются диагоналями параллелограмма Вариньона, то точка пересечения делит их пополам.

Олимпиадные задачи

1. Докажите, что если диагонали четырехугольника равны, то его площадь равна произведению средних линий [5].

Доказать что четырехугольник с вершинами в точках прямоугольник

Доказать: SABCD= KM*LN

Так как диагонали AC = BD, параллелограмм Вариньона является ромбом, площадь ромба равна половине произведения его диагоналей.

Что и требовалось доказать.

2. Докажите, что суммы площадей накрест лежащих четырехугольников, образованных пересечением бимедиан LN и KM выпуклого четырехугольника ABCD равны [6].

Доказать что четырехугольник с вершинами в точках прямоугольник

Воспользуемся теоремой о средней линии треугольника.

Что и требовалось доказать.

Заключение

«Нет ничего нового под солнцем, но есть кое-что старое, чего мы не знаем», – сказал американский литератор Лоренс Питер.

Пьер Вариньон жил в 18 веке, но теорема Вариньона как нельзя актуальна именно в наши дни, когда чтобы всё успеть, необходимо гораздо больше, чем 24 часа в сутки.

Поэтому была поставлена цель: изучить теорему Вариньона и научиться применять ее на практике с наименьшими временными затратами.

Для этого был разобран весь теоретический материал, решены задачи базового уровня, а также повышенной сложности (олимпиадные). Было подсчитано, что на решение задачи традиционным способом затрачивается 15-20 минут, а зная теорему Вариньона и следствия из нее, доказательство сводится к одному-двум предложениям и занимает 1-2 минуты. При этом экономия времени на доказательство в среднем составляет 15 минут. Таким образом, уже даже решение трех задач добавит дополнительные сорок пять минут (т.е. целый урок) на доказательство других, более сложных.

От этого повышается не только интерес к изучению данного предмета, но и сам процесс работы приносит удовлетворение. Цель работы считаю достигнутой.

📽️ Видео

Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

№382. Диагонали параллелограмма ABCD пересекаются в точке О. Докажите, что четырехугольникСкачать

№382. Диагонали параллелограмма ABCD пересекаются в точке О. Докажите, что четырехугольник

№933. Найдите координаты вершины D параллелограмма ABCD, если А (0; 0), B (5; 0), С (12; -3.).Скачать

№933. Найдите координаты вершины D параллелограмма ABCD, если А (0; 0), B (5; 0), С (12; -3.).

Геометрия 8. Урок 4 - Прямоугольник, ромб, квадрат - свойства и признаки.Скачать

Геометрия 8. Урок 4 - Прямоугольник, ромб, квадрат - свойства и признаки.

№958. Дан прямоугольник ABCD. Докажите, что для произвольной точки М плоскости справедливо равенствоСкачать

№958. Дан прямоугольник ABCD. Докажите, что для произвольной точки М плоскости справедливо равенство

8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

№950. Докажите, что четырехугольник MNPQ является параллелограммом,Скачать

№950. Докажите, что четырехугольник MNPQ является параллелограммом,

ОГЭ Задание 25 Определение прямоугольникаСкачать

ОГЭ Задание 25 Определение прямоугольника

Геометрия На диагонали AC прямоугольника ABCD отложены равные отрезки AM и CK (точка M лежит междуСкачать

Геометрия На диагонали AC прямоугольника ABCD отложены равные отрезки AM и CK (точка M лежит между

8 класс, 7 урок, ПрямоугольникСкачать

8 класс, 7 урок, Прямоугольник

Геометрия 8 класс (Урок№6 - Прямоугольник. Ромб. Квадрат.)Скачать

Геометрия 8 класс (Урок№6 - Прямоугольник. Ромб. Квадрат.)

Геометрия Признак прямоугольника Доказательство. Если диагонали параллелограмма равны, то этотСкачать

Геометрия Признак прямоугольника Доказательство. Если диагонали параллелограмма равны, то этот

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Разбор Задачи №16 из работы Статград от 11 марта 2020 (Запад)Скачать

Разбор Задачи №16 из работы Статград от 11 марта 2020 (Запад)
Поделиться или сохранить к себе:
Доказать что четырехугольник с вершинами в точках прямоугольник