Длина сторон треугольника формула

Все формулы для треугольника

Видео:Нахождение стороны прямоугольного треугольникаСкачать

Нахождение стороны прямоугольного треугольника

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

Длина сторон треугольника формула

a , b , c — стороны произвольного треугольника

α , β , γ — противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

Длина сторон треугольника формула

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

Длина сторон треугольника формула

Видео:Найдите сторону треугольника на рисункеСкачать

Найдите сторону треугольника на рисунке

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

Длина сторон треугольника формула

a , b — катеты

c — гипотенуза

α , β — острые углы

Формулы для катета, ( a ):

Длина сторон треугольника формула

Формулы для катета, ( b ):

Длина сторон треугольника формула

Формулы для гипотенузы, ( c ):

Длина сторон треугольника формула

Длина сторон треугольника формула

Формулы сторон по теореме Пифагора, ( a , b ):

Длина сторон треугольника формула

Длина сторон треугольника формула

Длина сторон треугольника формула

Видео:По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

По силам каждому ★ Найдите стороны треугольника на рисунке

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

Длина сторон треугольника формула

b — сторона (основание)

a — равные стороны

α — углы при основании

β — угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Длина сторон треугольника формула

Длина сторон треугольника формула

Формулы длины равных сторон , (a):

Длина сторон треугольника формула

Длина сторон треугольника формула

Видео:Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

4. Найти длину высоты треугольника

Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется — ортоцентр.

Длина сторон треугольника формула H — высота треугольника

a — сторона, основание

b, c — стороны

β , γ — углы при основании

p — полупериметр, p=(a+b+c)/2

R — радиус описанной окружности

S — площадь треугольника

Формула длины высоты через стороны, ( H ):

Длина сторон треугольника формула

Формула длины высоты через сторону и угол, ( H ):

Длина сторон треугольника формула

Формула длины высоты через сторону и площадь, ( H ):

Длина сторон треугольника формула

Формула длины высоты через стороны и радиус, ( H ):

Видео:Длина медианы треугольникаСкачать

Длина медианы треугольника

Длина стороны треугольника

Вычисление длины стороны треугольника по двум другим и углу между ними согласно теореме косинусов.

После написания калькулятора Длина стороны прямоугольного треугольника по запросу пользователя вдруг вспомнил, что теорема Пифагора есть частный случай теоремы косинусов:

Воистину, тема треугольника неисчерпаема, как атом. На сайте уже был один калькулятор, который использовал теорему косинусов — Нахождение углов треугольника по заданным сторонам, а вот и второй, который просто находит длину противолежащей стороны.

Видео:Найдите стороны треугольникаСкачать

Найдите стороны треугольника

Формулы треугольника

Для расчёта всех основных параметров треугольника воспользуйтесь калькулятором.

Виды треугольников

  1. Длина сторон треугольника формулаОстроугольный треугольник — это треугольник, в котором все три угла острые, т.е. меньше 90°.
  2. Прямоугольный треугольник — это треугольник, содержащий прямой угол.

    Две стороны, образующие прямой угол, называются катетами (АС и АВ), а сторона, противолежащая прямому углу, называется гипотенузой (ВС).

    Длина сторон треугольника формула
  3. Длина сторон треугольника формулаТупоугольный треугольник — это треугольник, содержащий тупой угол, т.е. один из его углов лежит в пределах между 90° и 180°.(по числу равных сторон)
  4. Длина сторон треугольника формулаРавносторонний (правильный) треугольник — это треугольник, у которого все стороны и все углы равны (каждый угол равен 60°).
  5. Длина сторон треугольника формулаРавнобедренный тругольник — это треугольник, у которого два угла и две стороны равны.
  6. Длина сторон треугольника формулаРазносторонний треугольник — это треугольник, в котором все углы, а значит и все стороны попарно различны.

Свойства треугольника, применимые к любому треугольнику:

  1. Против большей стороны лежит больший угол, и наоборот.
  2. Против равных сторон лежат равные углы, и наоборот. (В частности, все углы в равностороннем треугольнике равны.)
  3. Сумма углов треугольника равна 180° (Из двух последних свойств следует, что каждый угол в равностороннем треугольнике равен 60°).
  4. Продолжая одну из сторон треугольника (AВ), получаем внешний угол Θ.
  5. Любая сторона треугольника меньше суммы двух других сторон и больше их разности:
  • $$ AB BC — CA $$
  • $$ BC AB — CA $$
  • $$ CA AB — BC $$

Признаки равенства треугольников

Произвольные треугольники равны, если:

Три стороны одного треугольника равны трем сторонам другого треугольника (по трем сторонам).

AB = DE и BC = EF и AC = DF

Две стороны одного треугольника равны двум сторонам другого треугольника и углы между этими сторонами также равны (по двум сторонам и углу между ними).

AB = DE и BC = EF и ∠ABC = ∠DEF;

BC = EF и AC = DF и ∠BCA = ∠EFD;

AB = DE и AC = DF и ∠CAB = ∠FDE;

Три угла одного треугольника равны трем углам другого треугольника (по трем углам).

∠ABC = ∠DEF и ∠BCA = ∠EFD и ∠CAB = ∠FDE;

Два угла одного треугольника равны двум углам другого треугольника, и любая сторона первого треугольника равна соответствующей стороне другого треугольника.

∠ABC = ∠DEF и ∠BCA = ∠EFD;

∠BCA = ∠EFD и ∠CAB = ∠FDE;

∠CAB = ∠FDE и ∠ABC = ∠DEF;

AB = DE или BC = EF или AC = DF

Прямоугольные треугольники равны, если равны:

    Гипотенуза и острый угол.

BC = EF и ∠ABC = ∠DEF

BC = EF и ∠BCA = ∠EFD;

Катет и противолежащий угол.

AB = DE и ∠BCA = ∠EFD

AC = DF и ∠ABC = ∠DEF

Катет и прилежащий угол.

AB = DE и ∠ABC = ∠DEF

AC = DF и ∠BCA = ∠EFD

AB = DE и AC = DF

Гипотенуза и катет.

AB = DE и BC = EF

AC = DF и BC = EF

Подобные треугольники

Длина сторон треугольника формула

Два треугольника являются подобными, если углы одного треугольника равны, углам тругого треугольника, а стороны подобны

Признаки подобия треугольников

  • Два угла одного треугольника равны двум углам другого треугольника.
  • Две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, образованные этими сторонами, равны.
  • Три стороны одного треугольника соответственно пропорциональны трем сторонам другого треугольника.

Свойства подобных треугольников.

  • Отношение площадей подобных треугольников равно квадрату коэффициента подобия (Kподобия) $$ <S_over S_> = К_^2 $$
  • Отношение периметров и длин биссектрис, медиан, высот, серединных перпендикуляров равно коэффициенту подобия. т.е. в подобных треугольниках соответствующие линии (высоты, медианы, биссектрисы и т. п.) пропорциональны.

Подобие в прямоугольных треугольниках.

Длина сторон треугольника формула

  • Треугольники, образованные высотой, опущенной из прямого угла, являются подобными друг другу
  • Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
  • Если два катета одного прямоугольного треугольника пропорциональны двум катетам другого прямоугольного треугольника, то такие треугольники подобны.
  • Если катет и гипотенуза одного прямоугольного треугольника пропорциональны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники подобны.

Площадь треугольника

Длина сторон треугольника формула

Длина сторон треугольника формула Длина сторон треугольника формула
Длина сторон треугольника формулаДлина сторон треугольника формула
Где:AB,BC,AC – стороны треугольника
h – высота треугольника
α, β, γ– углы треугольника
P – полупериметр
AC – основание треугольника

Площадь произвольного треугольника

Площадь треугольника по формуле Герона

Площадь треугольника по углу и двум сторонам

$$ S = * AB * AC * sin(α) $$ $$ S = * AB * BC * sin(β) $$ $$ S = * AC * BC * sin(γ) $$

Площадь треугольника по двум углам и стороне

Длина сторон треугольника формула

Площадь прямоугольного треугольника по катетам

Где:AB,AC – катеты треугольника

$$ S = * AB * AC $$

Длина сторон треугольника формула

Площадь равнобедренного треугольника

Где:AB,BC – равные стороны треугольника
AC – основание треугольника

$$ S = * sqrt $$

Длина сторон треугольника формула

Площадь равностороннего треугольника

Где:AB,BC,AC – равные стороны треугольника
h – высота треугольника

$$ S = <sqrtover 4> * AB^2 $$ $$ S = <h^2 over sqrt> $$

Стороны треугольника

Длина сторон треугольника формула

Где:AB,BC,AC – стороны треугольника
h – высота треугольника
α, β, γ– углы треугольника
P – полупериметр
AC – основание треугольника

Сторона треугольника по двум сторонам и углу

Сторона треугольника по стороне и двум углам

Длина сторон треугольника формула

Сторона прямоугольного треугольника

Где:AB,AC – катеты треугольника
BC – гипотенуза треугольника

$$ AC = BC * cos(β) = BC * sin(α) = AB * tg(α) $$ $$ AB = BC * cos(α) = BC * sin(β) = AC * tg(β) $$ $$ BC = = $$ $$ BC = = $$

Сторона прямоугольного треугольника по теореме Пифагора.

Длина сторон треугольника формула

Сторона равнобедренного треугольника

Где:AB,BC – равные стороны треугольника
AC – основание треугольника

$$ AC = 2 * AB * sin() = AB * sqrt $$ $$ AC = 2 * AB * cos(α) $$ $$ AB = = <AC over sqrt> $$ $$ AB = $$

Высота треугольника

Высота – это перпендикуляр, выходящий из любой вершины треугольника, к противоположной стороне или её продолжению для треугольника с тупым углом. Высоты треугольника пересекаются в одной точке

Длина сторон треугольника формула

Где:AB,BC,AC – стороны треугольника
h – высота треугольника
P – полупериметр $$ P = $$
α, β, γ – углы треугольника
R — радиус описанной окружности
S — площадь треугольника

Высота на сторону АС, hAC

Высота на сторону AB, hAB

Высота на сторону BC, hBC

Формула длины высоты через сторону и угол

Высота на сторону АС, hAC

$$ h_ = AB * sin(α) = BC * sin(γ) $$

Высота на сторону AB, hAB

$$ h_ = BC * sin(β) = AC * sin(α) $$

Высота на сторону BC, hBC

$$ h_ = AC * sin(γ) = AB * sin(β) $$

Формула длины высоты через сторону и площадь

Высота на сторону АС, hAC

Высота на сторону AB, hAB

Высота на сторону BC, hBC

Формула длины высоты через стороны и радиус

Высота на сторону АС, hAC

Высота на сторону AB, hAB

Высота на сторону BC, hBC

Формулы высоты из прямого угла в прямоугольном треугольнике

В прямоугольном треугольнике катеты, являются высотами. Ортоцентр — точка пересечения высот, совпадает с вершиной прямого угла.

Длина сторон треугольника формула

Где:AB,AC – катеты треугольника
BC – гипотенуза треугольника
BD, DC – отрезки полученные от деления гипотенузы, высотой
α, β– углы треугольника

Формула длины высоты через гипотенузу и острые углы

$$ h = BC * sin(α) * cos(α) = BC * sin(β) * cos(β) $$

Формула длины высоты через катет и угол

$$ h = AB * sin(α) = AC * sin(β) $$

Формула длины высоты через составные отрезки гипотенузы

Биссектрисы в треугольнике

Биссектриса – это отрезок, который делит угол пополам из которого выходит. Точка пересечения всех трех биссектрис треугольника совпадает с центром вписанной окружности.

Длина сторон треугольника формула

Где:AB,BC,AC – стороны треугольника
AA1,BB1,CC1 — биссектрисы в треугольнике
α, β, γ– углы треугольника
P – полупериметр $$ P = $$

Длина биссектрисы через две стороны и угол

Длина биссектрисы через полупериметр и стороны

Длина биссектрисы через три стороны

Длина биссектрисы через стороны и отрезки, на которые делит биссектриса

Формула длины биссектрис в прямоугольном треугольнике

Длина сторон треугольника формула

Где:AB,AC – катеты треугольника
BC – гипотенуза треугольника
β, γ– острые углы треугольника

Длина биссектрисы из прямого угла, через катеты.

Длина биссектрисы из прямого угла, через гипотенузу и угол

Длина биссектрисы через катет и угол

Длина биссектрисы через катет и гипотенузу

Длина биссектрисы равнобедренного треугольника

Длина сторон треугольника формула

Где:AB,BC – равные стороны треугольника
AC – основание треугольника
α – равные углы при основании треугольника
β – угол образованный равными сторонами треугольника

Длина биссектрисы через стороны и угол, равнобедренного треугольника

$$ BB_1 = AB * sin(α) = * tg(α) = AB * cos() $$ $$ BB_1 = AB * sqrt <over 2> $$

Длина биссектрисы через стороны, равнобедренного треугольника

Длина биссектрисы равностороннего треугольника

Длина сторон треугольника формула

Где:AB,BC,AC – равные стороны треугольника

$$ BB_1 = <AB * sqrtover 2> $$

Медиана в треугольнике

Медиана – это отрезок, который выходит из вершины и делит противоположную сторону пополам. Медиана делит треугольник на два равных по площади треугольника.

Длина сторон треугольника формула

Где:AB,BC,AC – стороны треугольника
AA1,BB1,CC1 — медианы в треугольнике
α, β, γ– углы треугольника

Длина медианы через три стороны

Длина медианы через две стороны и угол между ними

Длина медианы в прямоугольном треугольнике, выходящая из прямого угла.

Длина сторон треугольника формула

Где:AB,AC – катеты треугольника
BC – гипотенуза треугольника
AA1,BB1,CC1 — медианы в треугольнике
β, γ– острые углы треугольника

Длина медианы в прямоугольном треугольнике, выходящая из прямого угла, равна радиусу описанной окружности, а середина гипотенузы является центром описанной окружности

Длина медианы через катеты

Длина медианы через катет и острый угол

Описанная окружность

Радиус описанной окружности произвольного треугольника по сторонам

Длина сторон треугольника формула

Где:AB,BC,AC – стороны треугольника
P – полупериметр $$ P = $$
R — радиус описанной окружности

$$ R = <AB * BC * CA over 4 * sqrt

> $$

Радиус описанной окружности равностороннего треугольника по стороне или высоте

Длина сторон треугольника формула

Где:AB,BC,AC – равные стороны треугольника
h – высота треугольника
R — радиус описанной окружности

$$ R = <AB over sqrt> $$ $$ R = $$

Радиус описанной окружности равнобедренного треугольника по сторонам

Длина сторон треугольника формула

Где:AB,BC – равные стороны треугольника
AC – основание треугольника
h – высота треугольника
R — радиус описанной окружности

$$ R = <AB^2 over sqrt> $$

Радиус описанной окружности прямоугольного треугольника по катетам

Длина сторон треугольника формула

Где:AB,AC – катеты треугольника
BC – гипотенуза треугольника
R — радиус описанной окружности

$$ R = * sqrt = $$

Длина окружности, L

Площадь окружности, S

Вписанная окружность

Радиус вписанной окружности произвольного треугольника по сторонам

Длина сторон треугольника формула

Где:AB,BC,AC – стороны треугольника
P – полупериметр $$ P = $$
R — радиус вписанной окружности

$$ R = sqrt <

over P> $$

Радиус вписанной окружности в равносторонний треугольник

Длина сторон треугольника формула

Где:AB,BC,AC – равные стороны треугольника
R — радиус вписанной окружности

$$ R = <AB over 2 * sqrt> $$

Радиус вписанной окружности равнобедренного треугольник

Длина сторон треугольника формула

Где:AB,BC – равные стороны треугольника
AC – основание треугольника
R — радиус вписанной окружности
h – высота треугольника
α – угол при основании треугольника

$$ R = * sqrt <> $$ $$ R = AB * = AB * cos(α) * tan() $$ $$ R = * = * tan() $$ $$ R = <AC * h over AC + sqrt> $$ $$ R = <h * sqrtover AB + sqrt> $$

Радиус вписанной окружности в прямоугольном треугольнике

📺 Видео

Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Как найти гипотенузу в прямоугольном треугольнике, минуя теорему Пифагора?Скачать

Как найти гипотенузу в прямоугольном треугольнике, минуя теорему Пифагора?

Найдите сторону треугольника, если другие его стороны равны 1 и 5Скачать

Найдите сторону треугольника, если другие его стороны равны 1 и 5

Найдите третью сторону треугольникаСкачать

Найдите третью сторону треугольника

Периметр треугольника. Как найти периметр треугольника?Скачать

Периметр треугольника. Как найти периметр треугольника?

Формулы равностороннего треугольника #shortsСкачать

Формулы равностороннего треугольника #shorts

Теорема Пифагора для чайников)))Скачать

Теорема Пифагора для чайников)))

Запомни: все формулы для площади треугольникаСкачать

Запомни: все формулы для площади треугольника

Определение длины гипотенузыСкачать

Определение длины гипотенузы

Теорема косинусов. Решить задачи. Найти сторону по двум сторонам и углу. Найти угол по сторонам.Скачать

Теорема косинусов. Решить задачи. Найти сторону по двум сторонам и углу. Найти угол по сторонам.

Вычисляем высоту через координаты вершин 1Скачать

Вычисляем высоту через координаты вершин  1

Формулы для медианы треугольникаСкачать

Формулы для медианы треугольника

Нахождение длины отрезка по координатамСкачать

Нахождение длины отрезка по координатам

Нахождение сторон равнобедренного треугольникаСкачать

Нахождение сторон равнобедренного треугольника
Поделиться или сохранить к себе: