Сферическая геометрия – математическая дисциплина, изучающая геометрические образы (точки, линии, фигуры), находящиеся на сфере, и соотношения между ними.
По-видимому, первым обращением человечества к тому, что потом получит название сферической геометрии, была планетарная теория греческого математика Евдокса (ок. 408–355), одного из участников Академии Платона. Это была попытка объяснить движение планет вокруг Земли с помощью четырех вращающихся концентрических сфер, каждая из которых имела особую ось вращения с концами, закрепленными на охватывающей сфере, к которой, в свою очередь, были «прибиты» звезды. Таким образом объяснялись замысловатые траектории планет (в переводе с греческого «планета» – блуждающая). Именно благодаря такой модели древнегреческие ученые умели достаточно точно описывать и предсказывать движения планет. Это было необходимо, например, в мореплавании, а так же во многих других «земных» задачах, где нужно было учитывать, что Земля – не плоский блин, покоящийся на трех китах. Значительный вклад в сферическую геометрию внес Менелай из Александрии (ок. 100 н.э.). Его труд Сферика стал вершиной достижений греков в этой области. В Сферике рассматриваются сферические треугольники – предмет, которого нет у Евклида. Менелай перенес на сферу евклидову теорию плоских треугольников и в числе прочего получил условие, при котором три точки на сторонах сферического треугольника или их продолжениях лежат на одной прямой. Соответствующая теорема для плоскости в то время была уже широко известна, однако в историю геометрии она вошла именно как теорема Менелая, причем, в отличие от Птолемея (ок. 150), у которого в работах немало вычислений, трактат Менелая геометричен строго в духе евклидовой традиции.
- Основные положения сферической геометрии
- Прямые, отрезки, расстояния и углы на сфере
- Сферический треугольник
- Координаты на сфере
- Сфера, шар, сегмент и сектор. Формулы и свойства сферы
- Уравнение сферы
- Основные свойства сферы и шара
- Секущая, хорда, секущая плоскость сферы и их свойства
- Касательная, касательная плоскость к сфере и их свойства
- Диаметрально противоположные точки на окружности
- Сферическая тригонометрия — математическая дисциплина, изучающая зависимости между углами и сторонами сферического треугольника.
- Сферическая теорема синусов
- 💥 Видео
Основные положения сферической геометрии
Всякая плоскость, пересекающая сферу, дает в сечении окружность. Если плоскость проходит через центр сферы, то в сечении получается так называемый большой круг. Через любые две точки на сфере, кроме диаметрально противоположных, можно провести единственный большой круг. (На глобусе примером большого круга служит экватор и все меридианы.) Через диаметрально противоположные точки проходит же бесконечное количество больших кругов. Меньшая дуга AmB (рис. 1) большого круга является кратчайшей из всех линий на сфере, соединяющих заданные точки. Такая линия называется геодезической. Геодезические линии играют на сфере ту же роль, что и прямые в планиметрии. Многие положения геометрии на плоскости справедливы и на сфере, но, в отличие от плоскости, две сферические прямые пересекаются в двух диаметрально противоположных точках. Таким образом, в сферической геометрии просто не существует понятия параллельности. Еще одно отличие – сферическая прямая замкнута, т.е. двигаясь по ней в одном и том же направлении, мы вернемся в исходную точку, точка не разбивает прямую на две части. И еще один удивительный с точки зрения планиметрии факт – треугольник на сфере может иметь все три прямых угла.
Рисунок 1 – Сферическая прямая
Прямые, отрезки, расстояния и углы на сфере
Прямыми на сфере считаются большие окружности. Если две точки принадлежат большой окружности, то длина меньшей из дуг, соединяющих эти точки, определяется как сферическое расстояние между этими точками, а сама дуга – как сферический отрезок. Диаметрально противоположные точки соединены бесконечным числом сферических отрезков – больших полуокружностей. Длина сферического отрезка определяется через радианную меру центрального угла α и радиус сферы R (рис. 2), по формуле длины дуги она равна R α. Любая точка С сферического отрезка АВ разбивает его на два, и сумма их сферических длин, как и в планиметрии, равна длине всего отрезка, т.е. АОС + СОВ = АОВ. Для любой же точки D вне отрезка АВ имеет место сферическое неравенство треугольника : сумма сферических расстояний от D до А и от D до В больше АВ, т.е. AOD + DOB > AOB, – полное соответствие между сферической и плоской геометриями. Неравенство треугольника – одно из основополагающих в сферической геометрии, из него следует, что, как и в планиметрии, сферический отрезок короче любой сферической ломаной, а значит, и любой кривой на сфере, соединяющей его концы.
Рисунок 2 – Длина сферического отрезка
Таким же образом на сферу можно перенести и многие другие понятия планиметрии, в частности те, которые можно выразить через расстояния. Например, сферическая окружность – множество точек сферы, равноудаленных от заданной точки Р. Легко показать, что окружность лежит в плоскости, перпендикулярной диаметру сферы РР` (рис. 3), т.е. это обычная плоская окружность с центром на диаметре РР`. Но сферических центров у нее два: Р и Р`. Эти центры принято называть полюсами. Если обратиться к глобусу, то можно видеть, что идет речь именно о таких окружностях, как параллели, и сферическими центрами всех параллелей являются Северный и Южный полюса. Если диаметр r сферической окружности равен π/2, то сферическая окружность превращается в сферическую прямую. (На глобусе – экватор). В этом случае такую окружность называют полярой каждой из точек Р и P`.
Рисунок 3 – Сферическая окружность
Одним из важнейших понятий в геометрии является равенство фигур. Фигуры считаются равными, если одну на другую можно отобразить таким образом (поворотом и переносом), что сохранятся расстояния. Это верно и для сферической геометрии.
Углы на сфере определяются следующим образом. При пересечении двух сферических прямых a и b на сфере образуются четыре сферических двуугольника, подобно тому, как две пересекающиеся прямые на плоскости разбивают ее на четыре плоских угла (рис. 4). Каждому из двуугольников соответствует двугранный угол, образованный диаметральными плоскостями, содержащими a и b. А угол между сферическими прямыми равен меньшему из углов образуемых ими двуугольников.
Рисунок 4 – Углы на сфере
Отметим так же, что угол ABC, образованный на сфере двумя дугами большого круга, измеряют углом A`BC` между касательными к соответствующим дугам в точке В (рис. 5) или двугранным углом, образованным диаметральными плоскостями, содержащими сферические отрезки АВ и ВС.
Рисунок 5 – Угол на сфере, образованный дугами большого круга
Точно так же, как и в стереометрии, каждой точке сферы сопоставляется луч, проведенный из центра сферы в эту точку, а любой фигуре на сфере – объединение всех пересекающих ее лучей. Так, сферической прямой соответствует содержащая ее диаметральная плоскость, сферическому отрезку – плоский угол, двуугольнику – двугранный угол, сферической окружности – коническая поверхность, ось которой проходит через полюсы окружности.
Многогранный угол с вершиной в центре сферы пересекает сферу по сферическому многоугольнику (рис. 6). Это область на сфере, ограниченная ломаной из сферических отрезков. Звенья ломаной – стороны сферического многоугольника. Их длины равны величинам соответствующих плоских углов многогранного угла, а величина угла при любой вершине А равна величине двугранного угла при ребре ОА.
Рисунок 6 – Многогранный угол
Сферический треугольник
Среди всех сферических многоугольников наибольший интерес представляет сферический треугольник. Три больших окружности, пересекаясь попарно в двух точках, образуют на сфере восемь сферических треугольников. Зная элементы (стороны и углы) одного из них, можно определить элементы все остальных, поэтому рассматривают соотношения между элементами одного из них, того, у которого все стороны меньше половины большой окружности. Стороны треугольника измеряются плоскими углами трехгранного угла ОАВС, углы треугольника – двугранными углами того же трехгранного угла (рис. 7).
Рисунок 7 – Трехгранный угол
Многие свойства сферического треугольника (а они одновременно являются и свойствами трехгранных углов) почти полностью повторяют свойства обычного треугольника. Среди них – неравенство треугольника, которое на языке трехгранных углов гласит, что любой плоский угол трёхгранного угла меньше суммы двух других. Или, например, три признака равенства треугольников. Все планиметрические следствия упомянутых теорем вместе с их доказательствами остаются справедливыми на сфере. Так, множество точек, равноудаленных от концов отрезка, будет и на сфере перпендикулярной к нему прямой, проходящей через его середину, откуда следует, что серединные перпендикуляры к сторонам сферического треугольника AВС имеют общую точку, точнее, две диаметрально противоположные общие точки Р и Р`, являющиеся полюсами его единственной описанной окружности (рис. 8). В стереометрии это означает, что около любого трёхгранного угла можно описать конус. Легко перенести на сферу и теорему о том, что биссектрисы треугольника пересекаются в центре его вписанной окружности.
Рисунок 8 – Описанная окружность сферического треугольника
Теоремы о пересечении высот и медиан также остаются верными, но их обычные доказательства в планиметрии прямо или косвенно используют параллельность, которой, на сфере нет, и потому проще доказать их заново, на языке стереометрии. Рис. 9 иллюстрирует доказательство сферической теоремы о медианах: плоскости, содержащие медианы сферического треугольника АВС, пересекают плоский треугольник с теми же вершинами по его обычным медианам, следовательно, все они содержат радиус сферы, проходящий через точку пересечения плоских медиан. Конец радиуса и будет общей точкой трех «сферических» медиан.
Рисунок 9 – Доказательство сферической теоремы о медианах
Свойства сферических треугольников во многом отличаются от свойств треугольников на плоскости. Так, к известным трем случаям равенства прямолинейных треугольников добавляется еще и четвертый: два треугольника АВС и А`В`С` равны, если равны соответственно три угла РА = РА`, РВ = РВ`, РС = РС`. Таким образом, на сфере не существует подобных треугольников, более того, в сферической геометрии нет самого понятия подобия, т.к. не существует преобразований, изменяющих все расстояния в одинаковое (не равное 1) число раз. Эти особенности связаны с нарушением евклидовой аксиомы о параллельных прямых и также присущи геометрии Лобачевского. Треугольники, имеющие равные элементы и различную ориентацию, называются симметричными, таковы, например, треугольники АС`С и ВСС` (рис. 10).
Рисунок 10 – Симметричные треугольники
Сумма углов всякого сферического треугольника всегда больше 180°. Разность А + В + С – π = d (измеряемая в радианах) – величина положительная и называется сферическим избытком данного сферического треугольника. Площадь сферического треугольника: S = R 2 d где R – радиус сферы, а d – сферический избыток. Эта формула впервые была опубликована голландцем А.Жираром в 1629 и названа его именем.
Если рассматривать двуугольник с углом a, то при 226 = 2π/n (n – целое число) сферу можно разрезать ровно на n копий такого двуугольника, а площадь сферы равна 4πR 2 = 4π при R = 1, поэтому площадь двуугольника равна 4π/n = 2α. Эта формула верна и при α = 2πm/n и, следовательно, верна для всех a. Если продолжить стороны сферического треугольника АВС и выразить площадь сферы через площади образующихся при этом двуугольников с углами А, В, С и его собственную площадь, то можно прийти к вышеприведенной формуле Жирара.
Координаты на сфере
Каждая точка на сфере вполне определяется заданием двух чисел; эти числа (координаты) определяются следующим образом (рис. 11). Фиксируется некоторый большой круг QQ` (экватор), одна из двух точек пересечения диаметра сферы PP`, перпендикулярного к плоскости экватора, с поверхностью сферы, например Р (полюс), и один из больших полукругов PAP`, выходящих из полюса (первый меридиан). Большие полукруги, выходящие из P, называются меридианами, малые круги, параллельные экватору, такие, как LL`, – параллелями. В качестве одной из координат точки M на сфере принимается угол q = POM (высота точки), в качестве второй – угол j = AON между первым меридианом и меридианом, проходящим через точку M (долгота точки, отсчитываемая против часовой стрелки).
Рисунок 11 – Координаты точки на сфере
В географии (на глобусе) в качестве первого меридиана принято использовать Гринвичский меридиан, проходящий через главный зал Гринвичской обсерватории (Гринвич – городской округ Лондона), он разделяет Землю на Восточное и Западное полушария, соответственно и долгота бывает восточной либо западной и измеряется от 0 до 180° в обе стороны от Гринвича. А вместо высоты точки в географии принято использовать широту, т.е. угол NOM = 90° – θ, отсчитываемый от экватора. Т.к. экватор делит Землю на Северное и Южное полушария, то и широта бывает северной либо южной и изменяется от 0 до 90°.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Сфера, шар, сегмент и сектор. Формулы и свойства сферы
Формула. Объём шара:
V = | 4 | π R 3 = | 1 | π D 3 |
3 | 6 |
S = 4 π R 2 = π D 2
Видео:Физика - движение по окружностиСкачать
Уравнение сферы
x 2 + y 2 + z 2 = R 2
( x — x 0) 2 + ( y — y 0) 2 + ( z — z 0) 2 = R 2
Видео:Точки A, B и C лежат на окружности основания конуса с вершиной S, причем A и C диаметрально противопСкачать
Основные свойства сферы и шара
Видео:Криволинейное, равномерное движение материальной точки по окружности. 9 класс.Скачать
Секущая, хорда, секущая плоскость сферы и их свойства
d m между секущей плоскостью и центром сферы всегда меньше радиуса R:
m r такого круга можно найти по формуле:
где R — радиус сферы (шара), m — расстояние от центра шара до секущей плоскости.
Видео:Два мотоциклиста стартуют одновременно из двух диаметрально противоположных точек круговой трассы ..Скачать
Касательная, касательная плоскость к сфере и их свойства
Формула. Объём сегмента сферы с высотой h через радиус сферы R:
V = | h 2 π | (3R — h ) |
3 |
S = π R(2 h + √ 2 h R — h 2 )
Формула. Объём сектора V с высотой O1H (h) через радиус шара OH (R):
V = | 2 π R 2 h |
3 |
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Видео:Два мотоциклиста стартуют одновременно в одном направлении из двух диаметрально противоположныхСкачать
Диаметрально противоположные точки на окружности
В одной из игре «Что? Где? Когда?» был задан вопрос: «Сумма углов какого треугольника равна 181˚37’26’’?». Тогда я очень заинтересовалась этой темой, ведь в школе мы учили, что всегда сумма углов треугольника будет равна 180˚. Конечно, я не учла, что существуют разные геометрии, соответственно и разные правила. Заинтересовавшись вопросом, я узнала что существует такая странная неевклидова геометрия — сферическая. Эта тема меня сразу же увлекла, ведь я решила посвятить будущую профессию изучению космоса, астрономии, а именно здесь сферическая геометрия — неотъемлемая часть. И тем не менее в повседневной жизни и даже на уроках геометрии в школе нам не приходилось с ней сталкиваться, поэтому не все представляют себе, что она изучает и для чего нужна.
Сейчас сферическая геометрия нужна не только астрономам, штурманам морских кораблей, самолётов, космических кораблей, которые по звёздам определяют свои координаты, но и строителям шахт, метрополитенов, тоннелей, а также при геодезических съёмках больших территорий поверхности Земли, когда становится необходимым учитывать её шарообразность.
Гипотеза: некоторые свойства сферического треугольника совпадут со свойствами Евклидова треугольника.
Цель: целью настоящего исследования является изучение понятий и фактов сферической геометрии треугольника и сравнение их с обычной евклидовой геометрией треугольника.
Для достижения цели исследования нам необходимо было решить ряд задач:
Изучить основные понятия сферической геометрии треугольника.
Проанализировать и сравнить понятия сферической евклидовой геометрии треугольника
Доказать ряд теорем евклидовой геометрии треугольника (в том числе, теорему синусов и косинусов) для сферического треугольника.
На основе полученных знаний решить задачи по теме сферической геометрии.
Разработать памятку сравнения сферической и неевклидовой геоетрии.
Объект исследования — понятие сферической геометрии.
Предмет исследования — определения и теоремы сферической геометрии треугольника.
Методы исследования — аналогия и сравнительный анализ сферического и евклидового треугольника.
Структура работы обусловлена целью исследования. Работа состоит из двух частей: в первой приводится общая теория о сфере, понятие сферического треугольника, сферические теоремы синусов и косинусов, двойственная теорема косинусов
Во второй части работы я рассмотрела решения задач на применение рассмотренных теорем, а также задачи практического характера.
Мне и ученикам, собирающимся поступать на технические специальности, полезно изучение этой темы, т.к. в вузе она активно используется в программе. Я разработаю сравнительную таблицу сферической геометрии и планиметрии для наиболее ясного восприятия.
Основные понятия сферической геометрии.
Вернусь к вопросу: «Сумма углов какого треугольника равна 181˚37’26’’?». Ответ: Бермудского треугольника (рис. 1). Почему? Потому что он расположен на сфере! Наша Земля имеет форму шара, приплюснутого с полюсов. Современная наука дает название такому телу – геоид. Хотя в переводе с греческого «геоид» переводится, как «нечто, похожее на форму Земли», тем не менее, это остается фактом. Геоид с шаром приближается довольно неплохо. Поэтому, для удобства изучения сферической геометрии, форму нашей планеты принимают за шар, сферу. Вторая оговорка, которую стоит иметь ввиду, в случае работы с сравнительно небольшим участком земли (относительно площади всей поверхности Земли), достаточно плоской геометрии из-за незначительной кривизны. Однако, если речь идет о чем-то глобальном, то дело уже становится существенным и тогда удобно рассматривать сферу, как некий аналог плоскости. Другой подход заключается в том, что можно сказать, что у нас есть пространство и в нем находятся сферы, а все, что находится на сфере, находится в самом обычном традиционном евклидовом пространстве, где существуют законы евклидовой стереометрии.
Поэтому мы будем проводить аналогию между этими геометриями (сферической и планиметрией). Например, точки сферы будут сопоставляться, как точки «плоскости».
Возникает вопрос: что же такое прямые и отрезки на сфере? «Прямая» на сфере – это большой круг, окружность, которая проходит через диаметрально противоположные точки, или сечение сферы плоскостью проходящее через ее центр (экватор и меридианы, важно: не стоит путать с тропиками, они не проходят через диаметрально противоположные точки).
Вот основные аксиомы про прямые в сферической геометрии.
Через две точки, не являющимися диаметрально противоположными, проходит только одна прямая.
Любые две прямые пересекаются в 2 – х диаметрально противоположных точках.
Последнее порождает такую удивительную фигуру, как двуугольник. Это фигура, напоминающая «дольку», состоящая из двух углов.
Есть такие базовые вещи из школьной геометрии, как, например, признаки равенства треугольников (1-й, 2-й и 3-й). Так вот они работают и на сфере. А что происходит на плоскости, когда углы треугольников равны друг другу? На плоскости они подобны. А на сфере? Оказывается, в сферической геометрии такие треугольники также будут равны, ведь подобных треугольников здесь не существует.
Еще одной характеристикой треугольника на сфере будет дефект. Дефект – разница между настоящей суммой и эталонной (такой, как если бы она была, будь треугольник на плоскости). Пусть у нас есть треугольник, где сумма углов равна 270 градусов. На плоскости она составляла бы 180 градусов. А вот разность между суммой на сфере и плоскости и называется дефектом. Т.е.
ДЕФЕКТ = α + β + µ — 180˚
Снова обратимся к бермудскому треугольнику. Его дефект равен примерно 1,5˚. Треугольник не очень большой, следовательно, дефект тоже маленький.
Дефект треугольника пропорционален его площади (это работает и на плоскости, просто k =0).
Теперь рассмотрим многоугольник. Пусть m – n -угольник.
Dm = α + β + µ — 180˚(n-2)
Если m состоит из нескольких n -угольников (допустим m 1 и m 2)
Sm = Sm1 + Sm2 ⇒ Dm = Dm1 + Dm2
У двуугольника дефект соответственно равен 2α, т.к. в евклидовой геометрии сумма углов равна нулю.
Из практики, на плоскую карту положить сферу без искажений невозможно. Ведь то, что является прямой на плоскости, на сфере – кривая. Почему? Виной этому, например сумма углов треугольника. В пространстве существуют другие поверхности, где внутренняя геометрия – евклидова. В пример приведу конус, цилиндр. В них локальные фигуры похожи на плоскость, чего нельзя сказать о сфере. В частности, когда мы пытаемся ее изобразить, то получается, допустим, что «прямые2 перестают быть прямыми. Обычно также жертвуют тем, что площади будут искажаться. Так Гренландия окажется больше Австралии (!), что, конечно, ложно.
При изучении сферической геометрии и использовании ее в расчетах на Земле и в космосе сразу возникает интересный вопрос: Как посчитать расстояние между двумя точками на сфере? (К этому вопросу я еще вернусь позднее)
Сферическим расстоянием между двумя точками сферы называется длина кратчайшей из дуг большой окружности, проведенной через эти точки (рис.2).
В случае когда точки А и В диаметрально противоположны, через них можно провести бесконечно много больших окружностей, но все они будут иметь одинаковую длину.
Также в отличие от обычной геометрии любые две сферические прямые пересекаются в двух диаметрально противоположных точках — на сфере отсутствует само понятие параллельности. Другое существенное отличие прямой на сфере от прямой на плоскости заключается в том, что сферическая прямая замкнута, двигаясь по ней в одну сторону, мы в конце концов вернемся в исходную точку, то есть точка не разбивает сферическую прямую на две части, подобные лучам обычной прямой.
Если две точки А и В принадлежат большой окружности, то длина меньшей из её двух дуг, соединяющих эти точки, принимается за сферическое расстояние между А и В. Самую меньшую дугу естественно считать сферическим отрезком АВ. Диаметрально противоположные точки соединены бесконечным числом сферических отрезков — больших полуокружностей.
Сферическое расстояние АВ выражается через радианную меру а центрального угла АОВ и радиус сферы R : по известной формуле для длины дуги, оно равно Ra . Если принять радиус сферы за единицу длины, то сферическое расстояние окажется равным угловой величине a соответствующей дуги.
Для сферического расстояния выполняются аксиомы расстояния:
|АВ|>0, причем |АВ|=0 в том случае, когда А = В.
Для любых точек А и В |АВ|=|ВА|.
Для любых точек А, В, С |АС| D вне отрезка имеет место «сферическое неравенство треугольника»: сумма сферических расстояний от D до А и от D до В больше АВ, или AOD + DOB — АОВ. Здесь существует полное соответствие между сферической и плоской геометриями.
Неравенство треугольника — одно из основополагающих свойств в геометрии на сфере. Именно благодаря ему, точно так же, как и в планиметрии, сферический отрезок короче любой сферической ломаной, а значит, и любой кривой на сфере, соединяющей его концы. Вслед за определением сферического расстояния на сферу переносят и почти все понятия плоской геометрии, потому что из можно выразить через расстояния на плоскости.
Определим теперь углы на сфере. Рассмотрим две сферические прямые а и b (рис. 3). Они разбивают сферу на четыре двуугольника подобно тому, как пересекающиеся прямые на плоскости разбивают её на четыре плоских угла. Каждому из двуугольников отвечает один из двугранных углов, образуемых диаметральными плоскостями, содержащими а и Ь.
Угол между сферическими прямыми — большими окружностями — определяется как угол между их плоскостями, или, что то же самое, как угол между касательными к этим окружностям в точке их пересечения. Величиной этого двугранного угла и измеряется, по определению, угол при вершине двуугольника. А угол между сферическими прямыми равен меньшему из углов образуемых ими двуугольников.
Хочу обратить внимание на соответствие, которое возникает между понятиями в геометрии на сфере и в стереометрии. Точкам сферы сопоставляется лучи, которые проведены в неё из центра О сферы, а любой фигуре на сфере — объединение всех пересекающих её лучей с общим началом в О. Сферической прямой отвечает содержащая её диаметральная плоскость, сферическому отрезку — плоский угол, двуугольнику — двугранный угол, сферической окружности — коническая поверхность, ось которой проходит через полюсы окружности. Равным сферическим фигурам соответствуют равные фигуры из лучей, движениям сферы — движения пространства, переводящие сферу в себя. Геометрические величины также находят себе пары: например, длина сферического отрезка — величина соответствующего плоского угла.
Сферическая система координат.
Представьте: мы находимся в неизвестной местности, не понимаем наше расположение и, конечно, хотим определить его, т.е. наши координаты. Что мы можем сделать? Созерцать звезды!
Во – первых, надо определить направление на север (на компас лучше не ориентироваться, ведь северный географический и северный магнитный полюс – разные вещи), поэтому ищем Полярную звезду. Полярная звезда располагается в ручке ковша Малой Медведицы и находится в направлении севера с небольшим отклонением. Она светит ярче других светил, поэтому более заметна. Отмечу, что так таковой небесной сферы не существует, однако, для удобства наблюдения звезд, необходимо было их проецировать на некоторую дугу, которая и внемлет точки нашего наблюдения. Земля вертится вокруг своей оси, следовательно изображения звезд тоже движутся для земного наблюдателя, а вот Полярная звезда, из – за расположения в северном центре покоится.
Для дальнейшего исследования необходимо ввести понятие сферической системы координат.
Наиболее широко применяются три пространственные системы координат. Первая из них — прямоугольная, или Декартова. Вторая, цилиндрическая, система координат, представляет собой нечто среднее между прямоугольной и полярной системами. Более сложна для восприятия, но просто необходима при решении многих задач, сферическая система координат (рис. 4). Она похожа на цилиндрическую: в ней также имеются плоскость а с полярной осью и дополнительная ось Oz , перпендикулярная плоскости а. Однако положение точки М пространства определяется такими координатами: угол ср, как и в цилиндрической системе, расстоянием R от точки М до полюса О (именно от точки М, а не от её проекции!) и ещё одним углом р — его образуют отрезок ОМ и положительное направление оси Oz . Сферическая система координат наиболее близка к географической, но отличается от неё тем, что на глобусе угол (3 отсчитывается не от вертикальной оси, а от горизонтальной плоскости, в которой лежит экватор. Кроме того, в географической системе добавлены понятия «северная (южная) широта» и «восточная (западная) долгота», чтобы указать направление отсчёта углов. Это позволяет обойтись без отрицательных значений.
полярная ось Рис.5
Почему в астрономии для определения положения светил используются именно сферические системы координат? Ответ прост; из — за того, что расстояния до небесных тел бывают известны редко даже сейчас, а в древности, когда закладывались основы астрономии, — и подавно. А поскольку положение точки в прямоугольной системе координат задаётся тремя линейными величинами, то такая система для большинства астрономических целей непригодна.
Сферические координаты издавно употреблялись в астрономии, формулы, связывающие сферические координаты с прямоугольными, приведены Ж. Лагранжем (1173), названия сферические координаты предложил Р. Бальтцер (1882).
Соответствие между аксиоматикой сферической геометрии и планиметрии.
В предыдущем пункте были введены, то есть определены важнейшие понятия сферической геометрии. Снова отмечу, что в планиметрии понятие прямой не определяется — это первичное понятие геометрии плоскости. Несмотря на это, требуется чтобы для прямых выполнялись на плоскости некоторые аксиомы. Так какие же из них будут справедливы в сферической геометрии — для сферических прямых?
Аксиома, гласящая, что каждая прямая есть множество точек, в сферической геометрии выполняется — большие окружности суть множества точек. Однако уже со следующей аксиомой: для любых двух точек А и В существует единственная содержащая эти точки прямая — дело обстоит сложнее. Если точки А и В сферы не являются диаметрально противоположными, то это предложение верно, но для диаметрально противоположных точек А и В существует бесконечно много сферических прямых, содержащих эти точки: пересечение сферы с любой плоскостью, содержащей диаметр АВ, даст такую прямую. Можно сказать, что эта аксиома почти выполняется на сфере. Оговорка почти приводит к следующим следствиям.
1.Любые две различные прямые на сфере пересекаются в диаметрально противоположных точках сферы.
Как следствие: в сферической геометрии нет содержательного понятия параллельности — нет различных параллельных прямых. Разумеется, не выполняется и аксиома параллельных, а следовательно, не имеет смысла говорить и о параллельных переносах.
В планиметрии одна из трех различных точек, принадлежащих одной прямой, лежит между двумя другими (если, скажем, точка В лежит между А и С, то это означает, что |АВ| + |ВС| = |АС|, тогда точка В принадлежит отрезку АС). В сферической геометрии такое понятие «лежать между» определить нельзя: например, если точки А, В и С лежат на большой окружности и разделены дугами градусной меры 120° (см. рис. 6), то ни про одну из них нельзя сказать, что она лежит между двумя другими. Грубо говоря, это объясняется тем, что в планиметрии точка разбивает прямую на два «отдельных» множества — открытых луча, а на сфере это неверно. Таким образом, об аксиомах порядка на сферических прямых говорить не приходится.
Одна из аксиом планиметрии гласит: всякая прямая разбивает плоскость на две открытые полуплоскости — два непустых множества, таких, что для точек А и В, принадлежащих разным множествам, отрезок АВ пересекает данную прямую, а если А и В принадлежат одному множеству, то АВ не пересекает прямую.
Легко видеть, что утверждение верно и в сферической геометрии: большая окружность разбивает сферу на две открытые полусферы, причем выполнены соответствующие требования.
Проанализировав все планиметрические аксиомы, я выяснила, что некоторые из аксиом выполняются и в сферической геометрии, другие же приходится отбросить.
Сферическую геометрию можно рассматривать как модель геометрии, в которой некоторые обычные аксиомы геометрии не справедливы, то есть как простейшую модель неевклидовой геометрии.
Нужно отметить, что говоря о моделях геометрии, подразумевают некоторое множество точек, вместе с совокупностью выделенных подмножеств этого множества, называемых прямыми. Геометрические модели возникают при изучении геометрических свойств окружающего реального мира; при этом абстрагируются от всяких физических и прочих не геометрических свойств. Так, при изучении геометрии поверхности Земли на сравнительно небольших, «плоских», участках возникла обычная, так называемая евклидова геометрия (планиметрия).
Сравнение аксиом планиметрии и стереометрии представлено в таблице:
Всякая прямая разбивает плоскость на две открытые полуплоскости — два непустых множества, таких, что для точек А и В, принадлежащих разным множествам, отрезок АВ пересекает данную прямую, а если А и В принадлежат одному множеству, то АВ не пересекает прямую.
Совпадает. Большая окружность разбивает сферу на две открытые полусферы
Каждая прямая есть множество точек
Совпадает. Большие окружности суть множества точек
Для любых двух точек А и В существует единственная содержащая эти точки прямая
Совпадает если точки А и В сферы не являются диаметрально противоположными
Но, для диаметрально противоположных точек А и В существует бесконечно много сферических прямых, содержащих эти точки: пересечение сферы с любой плоскостью, содержащей диаметр АВ, даст такую прямую.
Исходя из поправки о диаметрально противоположных прямых формулируется следующая аксиома:
Любые две различные прямые на сфере пересекаются в диаметрально противоположных точках сферы.
Через любую точку, не лежащую на данной прямой, можно провести прямую, параллельную данной, и притом только одну.
Не существует, так как в сферической геометрии нет содержательного понятия параллельности — нет различных параллельных прямых.
Очень важная часть сферической геометрии – тема «Сферический треугольник». Этот простейший сферический многоугольник представляет особый интерес.
Свойства сферического треугольника (рис. 7.).
Первым его ввёл в геометрический обиход и исследовал Менелай из Александрии (I в.). Его труд «Сферика» стал вершиной достижений треков в сферической геометрии. Менелай перенёс на сферу евклидову теорию плоских треугольников и вчисле прочего получил условие, при котором три точки на сторонах сферического треугольника или их продолжениях лежат на одной прямой. Интересно, что соответствующая теорема для плоскости в то время была уже широко известна, однако в историю геометрии она вошла именно как теорема Менелая.
Многие свойства сферического треугольника почти дословно повторяют свойства обычного треугольника. Среди них — неравенство треугольника, которое на языке трёхгранных углов гласит, что любой плоский угол трёхгранного угла меньше суммы двух других.
Для сферических треугольников справедливы три известных в планиметрии признака равенства: по двум сторонам и углу между ними, по стороне и двум прилежащим к ней углам, по трём сторонам.
На сфере справедлив ещё один признак равенства треугольников — по трём углам.
Подобных, но не равных между собой сферических треугольников не существует.
Понятно, что все планиметрические следствия упомянутых теорем вместе с их доказательствами остаются справедливыми на сфере. Так, множество точек, равноудалённых от концов отрезка, будет и на сфере перпендикурятной к нему прямой, проходящей через его середину, а отсюда следует, что серединные перпендикуляры к сторонам сферического треугольника АВС, биссектрисы внутренних углов, медианы и высоты имеют общую точку, точнее, две диаметрально противоположные общие точки Р и Р’, являющиеся полюсами его единственной описанной окружности. В стереометрии это означает, что около любого трёхгранного угла можно описать конус. Легко перенести на сферу и теорему о том, что биссектрисы треугольника пересекаются в центре его вписанной окружности.
Теоремы о пересечении высот и медиан тоже остаются верными, но их обычные доказательства в планиметрии прямо или косвенно используют параллельность, которой, как мы знаем, на сфере нет, и поэтому проще доказать их заново, на языке стереометрии.
Равными треугольниками считаются те, которые могут быть совмещены после передвижения по сфере. Отсюда следует, что равные сферические треугольники имеют равные элементы и одинаковую ориентацию. Треугольники, имеющие равные элементы и различную ориентацию, называются симметричным.
Сравнение признаков Евклидова треугольника и сферического:
Треугольник на плоскости
Признак неравенства треугольников: любой плоский угол трёхгранного угла меньше суммы двух других.
Два треугольника называются равными, если их можно совместить наложением.
Равными треугольниками считаются те, которые могут быть совмещены после передвижения по сфере.
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны
На сфере справедлив ещё один признак равенства треугольников — по трём углам.
Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны.
Подобных, но не равных между собой сферических треугольников не существует.
Если угол одного треугольника равен углу другого треугольника, а стороны, образующие этот угол, пропорциональны в равном отношении, то такие треугольники подобны.
Видео:Два мотоциклиста стартуют одновременно из диаметрально противоположных точекСкачать
Сферическая тригонометрия — математическая дисциплина, изучающая зависимости между углами и сторонами сферического треугольника.
Видео:Движение материальной точки по окружности | Физика ЕГЭ, ЦТСкачать
Сферическая теорема синусов
Теорема. Синусы сторон сферического треугольника относятся как синусы противолежащих углов.
Пусть длины сторон сферического треугольника (рис. 14) равны а, b , с, а противолежащие им углы этого треугольника равны А, В, С соответственно, r — радиус сферы, тогда
Перейдем к теореме косинусов, которая гласит:
Косинус одной стороны сферического треугольника равняется произведению косинусов двух других его сторон плюс произведение синусов тех же сторон на косинус угла между ними:
💥 Видео
#7str. Как использовать инверсию?Скачать
Движение по окружности №8 ЕГЭ ПрофильСкачать
движение по кругу | математика ЕГЭ | ВебиумСкачать
#31. Регион ВсОШ 2023, 11.5Скачать
Движение по окружности | задачи ЕГЭ по профильной математикеСкачать
Два мотоциклиста стартуют одновременно в одном направлении из диаметрально противоположных точекСкачать
Криволинейное, равномерное движение материальной точки по окружности. Практическая часть. 9 класс.Скачать
Два мотоциклиста стартуют одновременно в одном направлении из двух диаметрально противоположныхСкачать
Движение по окружности за 1 минуту #математика #егэ2023 #егэ2023 #fyp #школа #математикапрофиль2023Скачать
Построение окружности по трём точкам.Скачать
Бельчонок-2023. Планиметрия в одну строчкуСкачать
Окружность Эйлера (окружность 9 точек) и прямая ЭйлераСкачать