Как найти радиус окружности зная центр окружности

Нахождение радиуса круга: формула и примеры

В данной публикации мы рассмотрим, как можно вычислить радиус круга (окружности) и разберем примеры решения задач для закрепления материала.

Содержание
  1. Формулы вычисления радиуса круга
  2. 1. Через длину окружности/периметр круга
  3. 2. Через площадь круга
  4. Примеры задач
  5. Как найти радиус окружности
  6. Основные понятия
  7. Формула радиуса окружности
  8. Если известна площадь круга
  9. Если известна длина
  10. Если известен диаметр окружности
  11. Если известна диагональ вписанного прямоугольника
  12. Если известна сторона описанного квадрата
  13. Если известны стороны и площадь вписанного треугольника
  14. Если известна площадь и полупериметр описанного треугольника
  15. Если известна площадь сектора и его центральный угол
  16. Если известна сторона вписанного правильного многоугольника
  17. Скачать онлайн таблицу
  18. Радиус — это важнейший элемент окружности
  19. Что такое радиус
  20. Радиус и диаметр
  21. Свойства радиуса
  22. Длина и площадь окружности через радиус
  23. Длина окружности
  24. Площадь окружности
  25. Вместо заключения
  26. Комментарии и отзывы (2)

Видео:Радиус и диаметрСкачать

Радиус и диаметр

Формулы вычисления радиуса круга

Как найти радиус окружности зная центр окружности

1. Через длину окружности/периметр круга

Радиус круга/окружности рассчитывается по формуле:

Как найти радиус окружности зная центр окружности

C – это длина окружности/периметр круга; равняется удвоенному произведению числа π на его радиус:

C = 2 π R

π – число, приближенное значение которого равно 3,14.

2. Через площадь круга

Радиус круга/окружности вычисляется таким образом:

Как найти радиус окружности зная центр окружности

S – это площадь круга; равна числу π , умноженному на квадрат его радиуса:

S = π R 2

Видео:Найти центр и радиус окружностиСкачать

Найти центр и радиус окружности

Примеры задач

Задание 1
Длина окружности равняется 87,92 см. Найдите ее радиус.

Решение:
Используем первую формулу (через периметр):
Как найти радиус окружности зная центр окружности

Задание 2
Найдите радиус круга, если его площадь составляет 254,34 см 2 .

Решение:
Воспользуемся формулой, выраженной через площадь фигуры:
Как найти радиус окружности зная центр окружности

Видео:КАК НАЙТИ РАДИУС ОКРУЖНОСТИ ЗНАЯ ДИАМЕТР? КАК НАЙТИ ДИАМЕТР ОКРУЖНОСТИ ЗНАЯ РАДИУС? ПРИМЕРЫ 6 классСкачать

КАК НАЙТИ РАДИУС ОКРУЖНОСТИ ЗНАЯ ДИАМЕТР? КАК НАЙТИ ДИАМЕТР ОКРУЖНОСТИ ЗНАЯ РАДИУС? ПРИМЕРЫ 6 класс

Как найти радиус окружности

Как найти радиус окружности зная центр окружности

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Видео:КАК НАЙТИ РАДИУС КРУГА (ОКРУЖНОСТИ), ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 классСкачать

КАК НАЙТИ РАДИУС КРУГА (ОКРУЖНОСТИ), ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 класс

Основные понятия

Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости. Если говорить проще, то это замкнутая линия, как, например, обруч и кольцо.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу. Иначе говоря, плоская фигура, ограниченная окружностью, как мяч и блюдце.

Радиус — это отрезок, который соединяет центр окружности и любую точку на ней. Общепринятое обозначение радиуса — латинская буква R.

Возможно тебе интересно узнать — как найти длину окружности?

Видео:Окружность. Как найти Радиус и ДиаметрСкачать

Окружность. Как найти Радиус и Диаметр

Формула радиуса окружности

Определить способ вычисления проще, отталкиваясь от исходных данных. Далее рассмотрим девять формул разной степени сложности.

Видео:Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Если известна площадь круга

R = √ S : π, где S — площадь круга, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

Видео:начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.Скачать

начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.

Если известна длина

R = P : 2 * π, где P — длина (периметр круга).

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Если известен диаметр окружности

R = D : 2, где D — диаметр.

Диаметр — отрезок, который соединяет две точки окружности и проходит через центр. Радиус всегда равен половине диаметра.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Если известна диагональ вписанного прямоугольника

R = d : 2, где d — диагональ.

Диагональ вписанного прямоугольник делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Если диагональ неизвестна, теорема Пифагора поможет её вычислить:

d = √ a 2 + b 2 , где a, b — стороны вписанного прямоугольника.

Видео:Как найти центр круга с помощью подручных средств? ЛЕГКО.Скачать

Как найти центр круга с помощью подручных средств? ЛЕГКО.

Если известна сторона описанного квадрата

R = a : 2, где a — сторона.

Сторона описанного квадрата равна диаметру окружности.

Видео:Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Если известны стороны и площадь вписанного треугольника

R = (a * b * c) : (4 * S), где a, b, с — стороны, S — площадь треугольника.

Видео:КАК НАЙТИ ДЛИНУ ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТЕН ДИАМЕТР ИЛИ РАДИУС? Примеры | МАТЕМАТИКА 6 классСкачать

КАК НАЙТИ ДЛИНУ ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТЕН ДИАМЕТР ИЛИ РАДИУС? Примеры | МАТЕМАТИКА 6 класс

Если известна площадь и полупериметр описанного треугольника

R = S : p, где S — площадь треугольника, p — полупериметр треугольника.

Полупериметр треугольника — это сумма длин всех его сторон, деленная на два.

Видео:Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Если известна площадь сектора и его центральный угол

R = √ (360° * S) : (π * α), где S — площадь сектора круга, α — центральный угол.

Площадь сектора круга — это часть S всей фигуры, ограниченной окружностью с радиусом.

Видео:Окружность и круг, 6 классСкачать

Окружность и круг, 6 класс

Если известна сторона вписанного правильного многоугольника

R = a : (2 * sin (180 : N)), где a — сторона правильного многоугольника, N — количество сторон.

В правильном многоугольнике все стороны равны.

Видео:КАК НАЙТИ ДИАМЕТР ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 классСкачать

КАК НАЙТИ ДИАМЕТР ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 класс

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

Видео:9 класс, 6 урок, Уравнение окружностиСкачать

9 класс, 6 урок, Уравнение окружности

Радиус — это важнейший элемент окружности

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru.

Сегодня мы продолжим знакомить вас с различными математическими терминами. И расскажем, что такое РАДИУС.

Как найти радиус окружности зная центр окружности

На самом деле эту тему проходят еще в начальных классах обычной школы. И все, кто хорошо учился, сразу смогут сказать, о чем идет речь. Ну, или хотя бы точно понять, что РАДИУС как-то связан с окружностью.

Видео:Уравнение окружности (1)Скачать

Уравнение окружности (1)

Что такое радиус

Радиус – это отрезок, который начинается в центре окружности и заканчивается в любой точке ее поверхности. В то же время так называется и длина этого отрезка.

Вот так это выглядит графически.

Как найти радиус окружности зная центр окружности

Само слово РАДИУС имеет латинские корни. Оно произошло от «radius», что можно перевести как «луч» или «спица колеса». Впервые этот математический термин ввел французский ученый П.Ромус. Было это в 1569 году.

Но потребовалось чуть более ста лет, чтобы слово РАДИУС прижилось и стало общепринятым.

Кстати, есть еще несколько значений слова РАДИУС:

  1. Размер охвата чего-нибудь или сфера распространения. Например, говорят «Огонь уничтожил все в радиусе 10 километров» или «ОН показал на карте радиус действия артиллерии»;
  2. В анатомии этим словом обозначают Лучевую кость предплечья.

Но, конечно, нас интересует РАДИУС как математический термин. А потому и продолжим говорить именно о нем.

Видео:Как Найти Радиус Сегмента на Потолке. Радиус Окружности По Хорде И Высоте СегментаСкачать

Как Найти Радиус Сегмента на Потолке. Радиус Окружности По Хорде И Высоте Сегмента

Радиус и диаметр

Радиус в математике всегда обозначается латинской буквой «R» или «r». Принципиальной разницы, большую букву писать или маленькую, нет.

А два соединенных вместе радиуса, которые к тому же находятся на одной прямой, называются диаметром. Или по-другому:

Диаметр – это отрезок, который проходит через центр окружности и соединяет две противоположные точки на ее поверхности. По аналогии с радиусом под диаметром подразумевают и длину этого отрезка.

Как найти радиус окружности зная центр окружности

Обозначается диаметр также первой буквой своего слова – D или d.

Исходя из определения диаметра, можно сделать простой вывод, который одновременно является одной из базовых основ геометрии.

Длина диаметра равна удвоенной длине радиуса.

Как найти радиус окружности зная центр окружности

Видео:Не каждый знает как найти центр окружности без циркуля! #ShortsСкачать

Не каждый знает как найти центр окружности без циркуля! #Shorts

Свойства радиуса

В отношении радиуса действуют несколько важных правил:

  1. Радиус составляет половину диаметра. Это мы продемонстрировали только что.
  2. У окружности может быть сколько угодно радиусов. Но все они будут равны по длине между собой.

Как найти радиус окружности зная центр окружности

Как найти радиус окружности зная центр окружности

Радиус, который перпендикулярен хорде, делит ее на две равные части.

Напомним, хордой называется любой отрезок, который проходит через две точки на поверхности окружности, но не через центр. Этим она принципиально отличается от диаметра.

Как найти радиус окружности зная центр окружности

Видео:Радиус Хорда ДиаметрСкачать

Радиус Хорда Диаметр

Длина и площадь окружности через радиус

Об этих математических величинах мы решили рассказать не случайно. Дело в том, что при их вычислении просто необходимо знать значение радиуса. И наоборот, зная длину окружности или ее площадь, можно найти радиус.

Длина окружности

Длина окружности – это кривая, которая состоит из точек, равноудаленных от центра окружности. Проще говоря, это длина поверхности окружности.

Длина окружности одновременно является и ее периметром, а потому в геометрии она обозначается латинской буквой «Р» (иногда встречаются и «L», и «C»). А формула для ее вычисления выглядит следующим образом:

Как найти радиус окружности зная центр окружности

Иногда ее пишут и как P=πD, так как 2R – это удвоенный радиус, что, как мы уже сказали выше, является диаметром. Но классическая формула во всех учебниках дается все-таки через радиус.

Гораздо интереснее здесь рассмотреть величину, обозначаемую буквой π. Это как многим известно, математическая постоянная. Она произносится как «Пи» и равна 3,14.

Хотя на самом деле количество знаков после запятой у «пи» не ограничено. Но для простоты вычислений решено брать именно так.

Площадь окружности

Площадь окружности – это пространство, которое находится внутри ее периметра. Она обозначается латинской буквой «S». А формула для ее вычисления выглядит так:

Как найти радиус окружности зная центр окружности

Опять же, здесь R- это радиус, а π – математическая постоянная, равная 3,14.

Как найти радиус окружности зная центр окружности

Вместо заключения

Чтобы еще больше понять, насколько важно понятие РАДИУС, вспомните инструмент, с помощью которого можно начертить окружность. Это циркуль и выглядит он вот так.

Как найти радиус окружности зная центр окружности

Пользоваться им просто. Ножка с острым концом ставится в центр будущей окружности. А ножка с грифелем прочерчивает линию. А расстояние, на котором они будут друг от друга, и есть РАДИУС.

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

Комментарии и отзывы (2)

Геометрия была моим любимым предметом в школе. Особенно любил тригонометрию, но и с окружностями был на короткой ноге. Радиусы, диаметры и длину окружности могу определить до сих пор.

Меня восхищают люди, которые знают число Пи на память) Это же надо так математику любить)

Поделиться или сохранить к себе: