Даны векторы x и y которое из данных

Please wait.

Видео:№411. Даны векторы а{ — 1; 1; 1}, b{0; 2; —2}, с { — 3; 2; 0} и d{ — 2; 1; —2}. Найдите координатыСкачать

№411. Даны векторы а{ — 1; 1; 1}, b{0; 2; —2}, с { — 3; 2; 0} и d{ — 2; 1; —2}. Найдите координаты

We are checking your browser. megamozg.com

Видео:№776. Начертите два неколлинеарных вектора х и у и постройте векторы: a) x+2y; б) ½y + х; в) 3x+½yСкачать

№776. Начертите два неколлинеарных вектора х и у и постройте векторы: a) x+2y; б) ½y + х; в) 3x+½y

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6d431cd16c2a7175 • Your IP : 85.95.179.65 • Performance & security by Cloudflare

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

3.1.7. Примеры решения задач по теме «Линейные операции над векторами. Скалярное произведение»

Даны векторы А = (-2; 3; 5) и B = (4; -1; 7). Найти координаты вектора

При умножении вектора на число все его координаты

Умножаются на это число, при сложении векторов складываются их соответствующие координаты.

Координаты коллинеарных векторов пропорциональны.

Если A || B, то Даны векторы x и y которое из данных. Отсюда:

Даны векторы x и y которое из данных

Ответ: Даны векторы x и y которое из данных.

Найти направляющие косинусы вектора А = .

Направляющие косинусы являются координатами орта (единичного вектора) данного направления.

Найдем модуль вектора А:

Даны векторы x и y которое из данных

Разделив все координаты вектора А на его модуль, получим координаты орта:

Даны векторы x и y которое из данных

Даны векторы x и y которое из данных

Ответ: Даны векторы x и y которое из данных

Тогда AA + BB + GC = <2A + B— 3G; —A + B+ G; 3A B+ 2G>, причем координаты этого вектора должны равняться соответствующим координатам вектора D. Приравнивая эти координаты, получаем систему уравнений для определения A, B, G:

Даны векторы x и y которое из данных

Для векторов A = , B = , C = , D = найти такие числа A, B, G, чтобы векторы AA, BB, GC и D образовали замкнутую ломаную линию, если начало каждого последующего вектора совместить с концом предыдущего.

Даны векторы x и y которое из данных

C = линейно зависимой или линейно независимой.

Система векторов называется линейно независимой, если равенство

Вычислим главный определитель Δ системы уравнений

Даны векторы x и y которое из данных

Даны векторы x и y которое из данных

По правилу Крамера система имеет единственное решение, но для однородной системы всегда существует нулевое решение (A = B = G = 0).

Поскольку других решений нет, данная система векторов линейно независима.

Ответ: Система векторов линейно независима.

Найти координаты какого-либо вектора, направленного по биссектрисе угла между векторами А = (-4; 3; 0) и B = (12; -15; 16).

Диагональ параллелограмма является биссектрисой угла между сторонами только в том случае, если этот параллелограмм – ромб. Следовательно, искомым вектором можно считать сумму двух векторов равной длины, коллинеарных соответственно векторам А и B.

Вектор A + B направлен по диагонали параллелограмма, построенного на векторах А и B как на смежных сторонах и выходящей из общего начала векторов А и B.

Диагональ параллелограмма является биссектрисой угла между сторонами только в том случае, если этот параллелограмм – ромб. Следовательно, искомым вектором можно считать сумму двух векторов равной длины, коллинеарных соответственно векторам А и B.

Даны векторы x и y которое из данных

Следовательно, |5A| = |B|. Значит, параллелограмм со сторонами, совпадающими с векторами 5A и B, является ромбом, поэтому вектор 5A + B будет иметь заданное направление.

При каких значениях X, Y, Z точки А(Х; -1; 3), В(5; -4; Z), C(-2; Y; 9), D(-5; 1; 7) являются вершинами параллелограмма?

Для выполнения условия задачи требуется коллинеарность векторов Даны векторы x и y которое из данных и Даны векторы x и y которое из данных и Даны векторы x и y которое из данных и Даны векторы x и y которое из данных.

Для выполнения условия задачи требуется коллинеарность векторов Даны векторы x и y которое из данных и Даны векторы x и y которое из данных и Даны векторы x и y которое из данных и Даны векторы x и y которое из данных.

Найдем координаты этих векторов:

Даны векторы x и y которое из данных

Даны векторы x и y которое из данных

Из последней пропорции получаем, что Z = 1 – 2Y. Тогда

Даны векторы x и y которое из данных

Даны векторы x и y которое из данных

Но при этих значениях неизвестных

Даны векторы x и y которое из данных

Даны векторы x и y которое из данных

Условие задачи выполнено.

Используйте определение скалярного произведения:

Используем свойства скалярного произведения:

По определению скалярного произведения

Даны векторы x и y которое из данных

Сложим левые и правые части полученных равенств:

Даны векторы А = и B = . Найти скалярное произведение

Найдите координаты векторов 3АB и A + 2B или используйте свойства скалярного произведения.

Используем свойства скалярного произведения:

Используйте формулу, выражающую косинус угла между векторами через их скалярное произведение.

Даны векторы x и y которое из данных

Ответ: Даны векторы x и y которое из данных.

Координаты вектора B пропорциональны координатам А. Если K – коэффициент пропорциональности, то B = <2K; -2K; 3K>.

Координаты вектора B пропорциональны координатам А. Если K – коэффициент пропорциональности, то B = <2K; -2K; 3K>.

Известно, что |A| = 2, |B| = 7. Найти значения K, при которых векторы

Если векторы перпендикулярны, то их скалярное произведение равно нулю.

Если векторы перпендикулярны, то их скалярное произведение равно нулю.

Даны векторы x и y которое из данных

Ответ: K = Даны векторы x и y которое из данных.

Найти проекцию вектора А = на ось, образующую с координатными осями Ох и Оу углы 60о и 45о, а с осью Oz – тупой угол γ.

Используйте свойство направляющих косинусов:

Найдем cosγ: cos260o + cos245o + cos2γ = 1,

Даны векторы x и y которое из данных

Тогда проекция А на заданную ось равна:

🎥 Видео

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

№928. Даны векторы а {3; 7}, b {-2; 1}, с {6; 14}, d {2; -1}, е {2; 4}.Скачать

№928. Даны векторы а {3; 7}, b {-2; 1}, с {6; 14}, d {2; -1}, е {2; 4}.

№409. Даны векторы а{5; —1; 1}, b { — 2; 1; 0}, с {0; 0,2; 0} и d {-⅓;2⅖; -1/7}. Найдите координатыСкачать

№409. Даны векторы а{5; —1; 1}, b { — 2; 1; 0}, с {0; 0,2; 0} и d {-⅓;2⅖; -1/7}. Найдите координаты

ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | УмскулСкачать

ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | Умскул

№757. Начертите векторы х, у и z так, чтобы x↑↑y, x↑↓z . Постройте векторыСкачать

№757. Начертите векторы х, у и z так, чтобы x↑↑y, x↑↓z . Постройте векторы

№754. Начертите попарно неколлинеарные векторы х, у , z и постройте векторы x+у, x+z, z+y.Скачать

№754. Начертите попарно неколлинеарные векторы х, у , z и постройте векторы x+у, x+z, z+y.

Математика без Ху!ни. Смешанное произведение векторовСкачать

Математика без Ху!ни. Смешанное произведение векторов

Координаты вектора. 9 класс.Скачать

Координаты вектора. 9 класс.

Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

Разложение вектора по базису. 9 класс.Скачать

Разложение вектора по базису. 9 класс.

Найдите разложение вектора по векторам (базису)Скачать

Найдите разложение вектора по векторам (базису)

Выразить векторы. Разложить векторы. Задачи по рисункам. ГеометрияСкачать

Выразить векторы. Разложить векторы. Задачи по рисункам. Геометрия

9 класс, 1 урок, Разложение вектора по двум неколлинеарным векторамСкачать

9 класс, 1 урок, Разложение вектора по двум неколлинеарным векторам

Угол между векторами | МатематикаСкачать

Угол между векторами | Математика

9 класс, 2 урок, Координаты вектораСкачать

9 класс, 2 урок, Координаты вектора

Нахождение координат вектора. Практическая часть. 9 класс.Скачать

Нахождение координат вектора. Практическая часть. 9 класс.
Поделиться или сохранить к себе: