Омега в физике движение по окружности

I. Механика
Содержание
  1. Тестирование онлайн
  2. Угловая скорость
  3. Период и частота
  4. Линейная скорость
  5. Центростремительное ускорение
  6. Вращение Земли
  7. Связь со вторым законом Ньютона
  8. Как вывести формулу центростремительного ускорения
  9. Движение по циклоиде*
  10. Движение по окружности с постоянной по модулю скоростью
  11. теория по физике 🧲 кинематика
  12. Период, частота и количество оборотов
  13. Линейная и угловая скорости
  14. Линейная скорость
  15. Угловая скорость
  16. Центростремительное ускорение
  17. Движение по окружности омега
  18. I. Механика
  19. Тестирование онлайн
  20. Угловая скорость
  21. Период и частота
  22. Линейная скорость
  23. Центростремительное ускорение
  24. Вращение Земли
  25. Связь со вторым законом Ньютона
  26. Как вывести формулу центростремительного ускорения
  27. Движение по циклоиде*
  28. Движение по окружности с постоянной по модулю скоростью
  29. теория по физике 🧲 кинематика
  30. Период, частота и количество оборотов
  31. Линейная и угловая скорости
  32. Линейная скорость
  33. Угловая скорость
  34. Центростремительное ускорение
  35. Угловая скорость – Омега

Видео:Физика - движение по окружностиСкачать

Физика - движение по окружности

Тестирование онлайн

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.

Видео:Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | ИнфоурокСкачать

Движение тела по окружности с постоянной по модулю скоростью | Физика 9 класс #18 | Инфоурок

Угловая скорость

Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Омега в физике движение по окружностиОмега в физике движение по окружности Омега в физике движение по окружности

Видео:Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорениеСкачать

Урок 43. Криволинейное движение. Равномерное движение по окружности. Центростремительное ускорение

Период и частота

Период вращения T — это время, за которое тело совершает один оборот.

Частота вращение — это количество оборотов за одну секунду.

Омега в физике движение по окружности Омега в физике движение по окружности

Частота и период взаимосвязаны соотношением

Омега в физике движение по окружности Омега в физике движение по окружности

Связь с угловой скоростью

Омега в физике движение по окружности Омега в физике движение по окружности

Видео:Криволинейное, равномерное движение материальной точки по окружности. 9 класс.Скачать

Криволинейное, равномерное движение материальной точки по окружности. 9 класс.

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

Омега в физике движение по окружности

Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено — это есть период T. Путь, который преодолевает точка — это есть длина окружности.

Омега в физике движение по окружности Омега в физике движение по окружности

Видео:Движение по окружности. Нормальное и тангенциальное ускорение | 50 уроков физики (4/50)Скачать

Движение по окружности. Нормальное и тангенциальное ускорение | 50 уроков физики (4/50)

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Омега в физике движение по окружностиОмега в физике движение по окружности Омега в физике движение по окружности

Используя предыдущие формулы, можно вывести следующие соотношения

Омега в физике движение по окружности

Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Видео:Физика | Равномерное движение по окружностиСкачать

Физика | Равномерное движение по окружности

Вращение Земли

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Видео:Физика 9 класс. Движение по окружностиСкачать

Физика 9 класс. Движение по окружности

Связь со вторым законом Ньютона

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Омега в физике движение по окружности

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Видео:ЕГЭ 2021 по физике. Движение по окружности: это надо знать всемСкачать

ЕГЭ 2021 по физике. Движение по окружности: это надо знать всем

Как вывести формулу центростремительного ускорения

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна vA и vB соответственно. Ускорение — изменение скорости за единицу времени. Найдем разницу векторов.

Омега в физике движение по окружности

Разница векторов есть Омега в физике движение по окружности. Так как Омега в физике движение по окружности, получим

Омега в физике движение по окружности

Видео:Кинематика: движение по окружности | Физика ЕГЭ 10 класс | УмскулСкачать

Кинематика: движение по окружности | Физика ЕГЭ 10 класс | Умскул

Движение по циклоиде*

Омега в физике движение по окружности

В системе отсчета, связанной с колесом, точка равномерно вращается по окружности радиуса R со скоростью Омега в физике движение по окружности, которая изменяется только по направлению. Центростремительное ускорение точки направлено по радиусу к центру окружности.

Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А — уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

Мгновенная скорость определяется по формуле Омега в физике движение по окружности

Видео:Урок 89. Движение по окружности (ч.1)Скачать

Урок 89. Движение по окружности (ч.1)

Движение по окружности с постоянной по модулю скоростью

теория по физике 🧲 кинематика

Криволинейное движение — движение, траекторией которого является кривая линия. Вектор скорости тела, движущегося по кривой линии, направлен по касательной к траектории. Любой участок криволинейного движения можно представить в виде движения по дуге окружности или по участку ломаной.

Движение по окружности с постоянной по модулю скоростью — частный и самый простой случай криволинейного движения. Это движение с переменным ускорением, которое называется центростремительным.

Омега в физике движение по окружности

Особенности движения по окружности с постоянной по модулю скоростью:

  1. Траектория движения тела есть окружность.
  2. Вектор скорости всегда направлен по касательной к окружности.
  3. Направление скорости постоянно меняется под действием центростремительного ускорения.
  4. Центростремительное ускорение направлено к центру окружности и не вызывает изменения модуля скорости.

Видео:ЕГЭ по физике. Теория #9. Равномерное движение по окружностиСкачать

ЕГЭ по физике. Теория #9.  Равномерное движение по окружности

Период, частота и количество оборотов

Пусть тело двигается по окружности беспрерывно. Когда оно сделает один оборот, пройдет некоторое время. Когда тело сделает еще один оборот, пройдет еще столько же времени. Это время не будет меняться, потому что тело движется с постоянной по модулю скоростью. Такое время называют периодом.

Период — время одного полного оборота. Обозначается буквой T. Единица измерения — секунды (с).

Омега в физике движение по окружности

t — время, в течение которого тело совершило N оборотов

За один и тот же промежуток времени тело может проходить лишь часть окружности или совершать несколько единиц, десятков, сотен или более оборотов. Все зависит от длины окружности и модуля скорости.

Частота — количество оборотов, совершенных в единицу времени. Обозначается буквой ν («ню»). Единица измерения — Гц.

Омега в физике движение по окружности

N — количество оборотов, совершенных телом за время t.

Период и частота — это обратные величины, определяемые формулами:

Омега в физике движение по окружности

Количество оборотов выражается следующей формулой:

Омега в физике движение по окружности

Пример №1. Шарик на нити вращается по окружности. За 10 секунд он совершил 20 оборотов. Найти период и частоту вращения шарика.

Омега в физике движение по окружности

Видео:Кинематика Урок №8. Движение по окружности. Физика ЕГЭ 2022Скачать

Кинематика Урок №8. Движение по окружности. Физика ЕГЭ 2022

Линейная и угловая скорости

Линейная скорость

Линейная скорость — это отношение пройденного пути ко времени, в течение которого этот путь был пройден. Обозначается буквой v. Единица измерения — м/с.

Омега в физике движение по окружности

l — длина траектории, вдоль которой двигалось тело за время t

Линейную скорость можно выразить через период. За один период тело делает один оборот, то есть проходить путь, равный длине окружности. Поэтому его скорость равна:

Омега в физике движение по окружности

R — радиус окружности, по которой движется тело

Если линейную скорость можно выразить через период, то ее можно выразить и через частоту — величину, обратную периоду. Тогда формула примет вид:

Омега в физике движение по окружности

Выразив частоту через количество оборотов и время, в течение которого тело совершало эти обороты, получим:

Омега в физике движение по окружности

Угловая скорость

Угловая скорость — это отношение угла поворота тела ко времени, в течение которого тело совершало этот поворот. Обозначается буквой ω. Единица измерения — радиан в секунду (рад./с).

Омега в физике движение по окружности

ϕ — угол поворота тела. t — время, в течение которого тело повернулось на угол ϕ

Радиан — угол, соответствующий дуге, длина которой равна ее радиусу. Полный угол равен 2π радиан.

Омега в физике движение по окружности

За один полный оборот тело поворачивается на 2π радиан. Поэтому угловую скорость можно выразить через период:

Омега в физике движение по окружности

Выражая угловую скорость через частоту, получим:

Омега в физике движение по окружности

Выразив частоту через количество оборотов, формула угловой скорости примет вид:

Омега в физике движение по окружности

Сравним две формулы:

Омега в физике движение по окружности

Преобразуем формулу линейной скорости и получим:

Омега в физике движение по окружности

Отсюда получаем взаимосвязь между линейной и угловой скоростями:

Омега в физике движение по окружности

Полезные факты

  • У вращающихся прижатых друг к другу цилиндров линейные скорости точек их поверхности равны: v1 = v2.
  • У вращающихся шестерен линейные скорости точек их поверхности также равны: v1 = v2.
  • Все точки вращающегося твердого тела имеют одинаковые периоды, частоты и угловые скорости, но разные линейные скорости. T1 = T2, ν1 = ν2, ω1 = ω2. Но v1 ≠ v2.

Пример №2. Период обращения Земли вокруг Солнца равен одному году. Радиус орбиты Земли равен 150 млн. км. Чему примерно равна скорость движения Земли по орбите? Ответ округлить до целых.

В году 365 суток, в одних сутках 24 часа, в 1 часе 60 минут, в одной минуте 60 секунд. Перемножив все эти числа между собой, получим период в секундах.

Омега в физике движение по окружности

За каждую секунду Земля проходит расстояние, равное примерно 30 км.

Видео:угловая СКОРОСТЬ формула угловое УСКОРЕНИЕ 9 классСкачать

угловая СКОРОСТЬ формула угловое УСКОРЕНИЕ 9 класс

Центростремительное ускорение

Центростремительное ускорение — ускорение с постоянным модулем, но меняющимся направлением. Поэтому оно вызывает изменение направления вектора скорости, но не изменяет его модуль. Центростремительное ускорение обозначается как aц.с.. Единица измерения — метры на секунду в квадрате (м/с 2 ). Центростремительное ускорение можно выразить через линейную и угловую скорости, период, частоту и количество оборотов/время:

Омега в физике движение по окружности

Пример №3. Рассчитать центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли.

Спящий лев сделает один полный оборот тогда, когда Земля сделает один оборот вокруг своей оси. Земля делает это за время, равное 1 сутки. Поэтому период обращения равен 1 суткам. Количество секунд в сутках: 1 сутки = 24•60•60 секунд = 86400 секунд = 86,4∙10 3 секунд.

Радиус Земли равен 6400 км. В метрах это будет 6,4∙10 6 . Теперь у нас есть все, что нужно для вычисления центростремительного ускорения. Подставляем данные в формулу:

Омега в физике движение по окружности

Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу для определения искомой величины.
  3. Подставить известные данные в формулу и произвести вычисления.

Решение

Записываем исходные данные:

  • Радиус окружности, по которой движется автомобиль: R = 100 м.
  • Скорость автомобиля во время движения по окружности: v = 20 м/с.

Формула, определяющая зависимость центростремительного ускорения от скорости движения тела:

Омега в физике движение по окружности

Подставляем известные данные в формулу и вычисляем:

Омега в физике движение по окружности

pазбирался: Алиса Никитина | обсудить разбор | оценить

Точка движется по окружности радиусом R с частотой обращения ν. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?

а) увеличить в 2 раза б) уменьшить в 2 раза в) увеличить в 4 раза г) уменьшить в 4 раза

Алгоритм решения

  1. Записать исходные данные.
  2. Определить, что нужно найти.
  3. Записать формулу зависимости центростремительного ускорения от частоты.
  4. Преобразовать формулу зависимости центростремительного ускорения от частоты для каждого из случаев.
  5. Приравнять правые части формул и найти искомую величину.

Решение

Запишем исходные данные:

Центростремительное ускорение определяется формулой:

Омега в физике движение по окружности

Запишем формулы центростремительного ускорения для 1 и 2 случаев соответственно:

Омега в физике движение по окружности

Так как центростремительное ускорение в 1 и 2 случае одинаково, приравняем правые части уравнений:

Омега в физике движение по окружности

Произведем сокращения и получим:

Омега в физике движение по окружности

Омега в физике движение по окружности

Омега в физике движение по окружности

Это значит, чтобы центростремительное ускорение осталось неизменным после увеличения радиуса окружности в 4 раза, частота должна уменьшиться вдвое. Верный ответ: «б».

pазбирался: Алиса Никитина | обсудить разбор | оценить

Видео:Физика 9 класс (Урок№4 - Движение тела по окружности. Период и частота)Скачать

Физика 9 класс (Урок№4 - Движение тела по окружности. Период и частота)

Движение по окружности омега

Видео:Кинематика. Движение по окружности. Урок 4Скачать

Кинематика. Движение по окружности. Урок 4

I. Механика

Видео:Задание 1 ЕГЭ по физике. Движение по окружности.Скачать

Задание 1 ЕГЭ по физике. Движение по окружности.

Тестирование онлайн

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.

Видео:Кинематика. Движение по окружности. ЕГЭ Физика | Николай НьютонСкачать

Кинематика. Движение по окружности. ЕГЭ Физика | Николай Ньютон

Угловая скорость

Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Омега в физике движение по окружности Омега в физике движение по окружностиОмега в физике движение по окружности

Видео:Физика 10 класс (Урок№4 - Равномерное движение точки по окружности.)Скачать

Физика 10 класс (Урок№4 - Равномерное движение точки по окружности.)

Период и частота

Период вращения T — это время, за которое тело совершает один оборот.

Частота вращение — это количество оборотов за одну секунду.

Омега в физике движение по окружностиОмега в физике движение по окружности

Частота и период взаимосвязаны соотношением

Омега в физике движение по окружностиОмега в физике движение по окружности

Связь с угловой скоростью

Омега в физике движение по окружностиОмега в физике движение по окружности

Видео:Урок 47. Неравномерное движение по окружности. Тангенциальное ускорениеСкачать

Урок 47. Неравномерное движение по окружности. Тангенциальное ускорение

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

Омега в физике движение по окружности

Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено — это есть период T. Путь, который преодолевает точка — это есть длина окружности.

Омега в физике движение по окружностиОмега в физике движение по окружности

Видео:ДВИЖЕНИЕ ПО ОКРУЖНОСТИ 9 класс физика ПерышкинСкачать

ДВИЖЕНИЕ ПО ОКРУЖНОСТИ 9 класс физика Перышкин

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Омега в физике движение по окружности Омега в физике движение по окружностиОмега в физике движение по окружности

Используя предыдущие формулы, можно вывести следующие соотношения

Омега в физике движение по окружности

Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Вращение Земли

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Связь со вторым законом Ньютона

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Омега в физике движение по окружности

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Как вывести формулу центростремительного ускорения

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна vA и vB соответственно. Ускорение — изменение скорости за единицу времени. Найдем разницу векторов.

Омега в физике движение по окружности

Разница векторов есть Омега в физике движение по окружности. Так как Омега в физике движение по окружности, получим

Омега в физике движение по окружности

Движение по циклоиде*

Омега в физике движение по окружности

В системе отсчета, связанной с колесом, точка равномерно вращается по окружности радиуса R со скоростью Омега в физике движение по окружности, которая изменяется только по направлению. Центростремительное ускорение точки направлено по радиусу к центру окружности.

Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А — уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

Мгновенная скорость определяется по формуле Омега в физике движение по окружности

Движение по окружности с постоянной по модулю скоростью

теория по физике 🧲 кинематика

Криволинейное движение — движение, траекторией которого является кривая линия. Вектор скорости тела, движущегося по кривой линии, направлен по касательной к траектории. Любой участок криволинейного движения можно представить в виде движения по дуге окружности или по участку ломаной.

Движение по окружности с постоянной по модулю скоростью — частный и самый простой случай криволинейного движения. Это движение с переменным ускорением, которое называется центростремительным.

Омега в физике движение по окружности

Особенности движения по окружности с постоянной по модулю скоростью:

  1. Траектория движения тела есть окружность.
  2. Вектор скорости всегда направлен по касательной к окружности.
  3. Направление скорости постоянно меняется под действием центростремительного ускорения.
  4. Центростремительное ускорение направлено к центру окружности и не вызывает изменения модуля скорости.

Период, частота и количество оборотов

Пусть тело двигается по окружности беспрерывно. Когда оно сделает один оборот, пройдет некоторое время. Когда тело сделает еще один оборот, пройдет еще столько же времени. Это время не будет меняться, потому что тело движется с постоянной по модулю скоростью. Такое время называют периодом.

Период — время одного полного оборота. Обозначается буквой T. Единица измерения — секунды (с).

Омега в физике движение по окружности

t — время, в течение которого тело совершило N оборотов

За один и тот же промежуток времени тело может проходить лишь часть окружности или совершать несколько единиц, десятков, сотен или более оборотов. Все зависит от длины окружности и модуля скорости.

Частота — количество оборотов, совершенных в единицу времени. Обозначается буквой ν («ню»). Единица измерения — Гц.

Омега в физике движение по окружности

N — количество оборотов, совершенных телом за время t.

Период и частота — это обратные величины, определяемые формулами:

Омега в физике движение по окружности

Количество оборотов выражается следующей формулой:

Омега в физике движение по окружности

Пример №1. Шарик на нити вращается по окружности. За 10 секунд он совершил 20 оборотов. Найти период и частоту вращения шарика.

Омега в физике движение по окружности

Линейная и угловая скорости

Линейная скорость

Линейная скорость — это отношение пройденного пути ко времени, в течение которого этот путь был пройден. Обозначается буквой v. Единица измерения — м/с.

Омега в физике движение по окружности

l — длина траектории, вдоль которой двигалось тело за время t

Линейную скорость можно выразить через период. За один период тело делает один оборот, то есть проходить путь, равный длине окружности. Поэтому его скорость равна:

Омега в физике движение по окружности

R — радиус окружности, по которой движется тело

Если линейную скорость можно выразить через период, то ее можно выразить и через частоту — величину, обратную периоду. Тогда формула примет вид:

Омега в физике движение по окружности

Выразив частоту через количество оборотов и время, в течение которого тело совершало эти обороты, получим:

Омега в физике движение по окружности

Угловая скорость

Угловая скорость — это отношение угла поворота тела ко времени, в течение которого тело совершало этот поворот. Обозначается буквой ω. Единица измерения — радиан в секунду (рад./с).

Омега в физике движение по окружности

ϕ — угол поворота тела. t — время, в течение которого тело повернулось на угол ϕ

Радиан — угол, соответствующий дуге, длина которой равна ее радиусу. Полный угол равен 2π радиан.

Омега в физике движение по окружности

За один полный оборот тело поворачивается на 2π радиан. Поэтому угловую скорость можно выразить через период:

Омега в физике движение по окружности

Выражая угловую скорость через частоту, получим:

Омега в физике движение по окружности

Выразив частоту через количество оборотов, формула угловой скорости примет вид:

Омега в физике движение по окружности

Сравним две формулы:

Омега в физике движение по окружности

Преобразуем формулу линейной скорости и получим:

Омега в физике движение по окружности

Отсюда получаем взаимосвязь между линейной и угловой скоростями:

Омега в физике движение по окружности

  • У вращающихся прижатых друг к другу цилиндров линейные скорости точек их поверхности равны: v1 = v2.
  • У вращающихся шестерен линейные скорости точек их поверхности также равны: v1 = v2.
  • Все точки вращающегося твердого тела имеют одинаковые периоды, частоты и угловые скорости, но разные линейные скорости. T1 = T2, ν1 = ν2, ω1 = ω2. Но v1 ≠ v2.

Пример №2. Период обращения Земли вокруг Солнца равен одному году. Радиус орбиты Земли равен 150 млн. км. Чему примерно равна скорость движения Земли по орбите? Ответ округлить до целых.

В году 365 суток, в одних сутках 24 часа, в 1 часе 60 минут, в одной минуте 60 секунд. Перемножив все эти числа между собой, получим период в секундах.

Омега в физике движение по окружности

За каждую секунду Земля проходит расстояние, равное примерно 30 км.

Центростремительное ускорение

Центростремительное ускорение — ускорение с постоянным модулем, но меняющимся направлением. Поэтому оно вызывает изменение направления вектора скорости, но не изменяет его модуль. Центростремительное ускорение обозначается как aц.с.. Единица измерения — метры на секунду в квадрате (м/с 2 ). Центростремительное ускорение можно выразить через линейную и угловую скорости, период, частоту и количество оборотов/время:

Омега в физике движение по окружности

Пример №3. Рассчитать центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли.

Спящий лев сделает один полный оборот тогда, когда Земля сделает один оборот вокруг своей оси. Земля делает это за время, равное 1 сутки. Поэтому период обращения равен 1 суткам. Количество секунд в сутках: 1 сутки = 24•60•60 секунд = 86400 секунд = 86,4∙10 3 секунд.

Радиус Земли равен 6400 км. В метрах это будет 6,4∙10 6 . Теперь у нас есть все, что нужно для вычисления центростремительного ускорения. Подставляем данные в формулу:

Омега в физике движение по окружности

Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу для определения искомой величины.
  3. Подставить известные данные в формулу и произвести вычисления.

Решение

Записываем исходные данные:

  • Радиус окружности, по которой движется автомобиль: R = 100 м.
  • Скорость автомобиля во время движения по окружности: v = 20 м/с.

Формула, определяющая зависимость центростремительного ускорения от скорости движения тела:

Омега в физике движение по окружности

Подставляем известные данные в формулу и вычисляем:

Омега в физике движение по окружности

pазбирался: Алиса Никитина | обсудить разбор | оценить

Точка движется по окружности радиусом R с частотой обращения ν. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?

а) увеличить в 2 раза б) уменьшить в 2 раза в) увеличить в 4 раза г) уменьшить в 4 раза

Алгоритм решения

  1. Записать исходные данные.
  2. Определить, что нужно найти.
  3. Записать формулу зависимости центростремительного ускорения от частоты.
  4. Преобразовать формулу зависимости центростремительного ускорения от частоты для каждого из случаев.
  5. Приравнять правые части формул и найти искомую величину.

Решение

Запишем исходные данные:

Центростремительное ускорение определяется формулой:

Омега в физике движение по окружности

Запишем формулы центростремительного ускорения для 1 и 2 случаев соответственно:

Омега в физике движение по окружности

Так как центростремительное ускорение в 1 и 2 случае одинаково, приравняем правые части уравнений:

Омега в физике движение по окружности

Произведем сокращения и получим:

Омега в физике движение по окружности

Омега в физике движение по окружности

Омега в физике движение по окружности

Это значит, чтобы центростремительное ускорение осталось неизменным после увеличения радиуса окружности в 4 раза, частота должна уменьшиться вдвое. Верный ответ: «б».

pазбирался: Алиса Никитина | обсудить разбор | оценить

Угловая скорость – Омега

Физика > Угловая скорость – Омега

Чтобы проверить стремительность вращения тела, представим угловую скорость ω как скорость изменения угла:

Чем больше угол поворота за предложенный временной промежуток, тем выше угловая скорость. Единица – радиан в секунду.

Угловая скорость (ω) соответствует линейной (v). Чтобы отыскать точное соотношение между ними, рассмотрим углубление на вращающемся компакт-диске. Оно смещает длину дуги Δs за период Δt и поэтому обладает линейной скоростью v = Δs/Δt.

Из Δθ = (Δs)/r видно, что Δs = r ⋅ Δθ. Подставим в формулу для v, и видим:

v = (r ⋅ Δθ)/(Δt) = r (Δθ/Δt) = rω.

Это можно описать двумя путями: v = rω или ω = v/r.

Из первого видно, что линейная скорость (v) расположена пропорционально дистанции от центра вращения, поэтому ее максимум достигает для точки на ободе. На краю мы можем назвать ее тангенциальной скоростью.

Второе можно рассмотреть на перемещении машины. Обратите внимание на шину. Скорость точки в центре совпадает с показателями v машины. Чем быстрее движение, тем больше оборотов совершает шина, а значит v = rω. Точно также, шина большего радиуса, вращающаяся с той же угловой скоростью (ω), будет повышать линейную скорость (v).

Омега в физике движение по окружности

Машина, смещающаяся вправо со скоростью v, обладает шиной с угловой скоростью ω. Скорость протектора шины относительно оси приравнивается к v так же, как если бы машину приподняли. Получается, что транспорт перемещается вперед с линейной скоростью v = rω (r – радиус шины). Большая угловая скорость шины приводит к повышению скорости автомобиля

Поделиться или сохранить к себе: