Доказательство коммутативности сложения векторов

Доказательство коммутативности сложения векторов

Индивидуальные онлайн уроки: Отправьте запрос сейчас: irina@bodrenko.org
Математика (ЕГЭ, ОГЭ), Английский язык (разговорный, грамматика, TOEFL)
Решение задач: по математике, IT, экономике, психологии

Аналитическая геометрия
Bodrenko.com
Bodrenko.org

1.2 Операции над векторами.

    Сложение векторов. Сумма векторов а и b определяется следующим образом. Отложим вектор а от произвольной точки А, пусть В — конец этого вектора, т.е. а = . Затем отложим вектор b от точки В, пусть b = . Суммойа + bвекторова и b называется вектор, порожденный направленным отрезком (рис.1)
    .
    Это правило сложения векторов называется правилом треугольника. Очевидно, что этот же вектор а + b для неколлиниарных векторов а и b может быть получен (рис.2) как диоганаль параллелограмма, построенного на векторах а и b. Это правило сложения векторов называется правилом параллелограмма.

    Теорема 2.1. Операция сложения векторов обладает следующими свойствами:
    1)а + b = b + а, ∀ а, b (свойство коммутативности);
    2) (а + b) + с = а + (b + с), ∀ а, b, с (свойство ассоциативности);
    3) существует такой вектор 0, называемый нулевым вектором, что
    а + 0 = 0 + а = а, ∀ а (свойство существования нейтрального элемента);
    4) для любого вектора а существует такой вектора (называемый противоположным к вектору a), что а + (- а) = 0 (свойство существования симметричного элемента).

    Доказательство. Коммутативность и ассоциативность сложения в случае неколлиниарных векторов а, b и с проверяется непосредственным построением (рис.3) векторов левой и правой частей соответствующих равенств.

    Свойства 3 и 4 очевидны: нулевым вектором 0 будет класс эквивалентности нулевых направленных отрезков, противоположным к вектору а = будет вектор
    -а = .Теорема доказана.

    Разностьювекторов b и а называется вектор x такой, что а + x = b. Обозначение: bа.

    Теорема 2.2. Для любых векторов а и b существует, и притом единственная, разность bа.

    Доказательство. В качестве разности bа можно взять вектор b + (- а), так как а + (b + (- а)) = а + ((-а) + b) = (а + (-а)) + b = 0 + b = b. Эта разность единственная, так как если с − еще одна разность, то с = с + 0 = (с + а) + (-а) = b + (-а).
    Теорема доказана.

    Замечание. Правило параллелограмма сложения неколлиниарных векторов а и b позволяет построить и разность bа как другую диагональ параллелограмма (рис.4).

    Умножение вектора на число. Произведением вектора а на вещественное число α называется вектор b, удовлетворяющий следующим условиям:
    1) |b| = |α|•|а| и, в случае b ≠ 0,
    2) b ↑↑ а, если α > 0, и b ↑↓ а, если α

    Видео:8 класс, 44 урок, Законы сложения векторов. Правило параллелограммаСкачать

    8 класс, 44 урок, Законы сложения векторов. Правило параллелограмма

    $ AlexLat $

    Все сказанное пока еще не дает понятие вектора достаточно содержательным и полезным. Большую содержательность и богатую возможность приложений понятие вектора получает тогда, когда мы вводим своеобразную «геометрическую арифметику” – арифметику векторов, позволяющую складывать векторы, вычитать их и производить над ними целый ряд других операций. Отметим в связи с этим, что ведь и понятие числа становится интересным лишь при введении арифметических действий, а не само по себе.

    Доказательство коммутативности сложения векторов

    Доказательство коммутативности сложения векторов

    Для доказательства коммутативности сложения векторов на плоскости необходимо рассмотреть пример.

    Доказательство коммутативности сложения векторов

    1. Строим параллелограмм ОАСВ: АМ II ОВ, ВН II ОА.

    Доказательство коммутативности сложения векторов

    Для доказательства ассоциативности мы отложим от произвольной точки О вектор ОА = а , от точки А вектор АВ = в и от точки в – вектор ВС = с. Тогда мы имеем: АВ + ВС =АС.

    Доказательство коммутативности сложения векторов

    откуда и следует равенство а + ( в + с ) = (а + в) + с . Заметим, что приведенное доказательство совсем не использует чертежа. Это характерно ( при некотором навыке ) для решения задач при помощи векторов.

    Остановимся теперь на случае, когда векторы а и в направлены в противоположные стороны и имеют равные длины; такие векторы называют противоположными. Наше правило сложения векторов приводит к тому, что сумма двух противоположных векторов представляет собой «вектор”, имеющий нулевую длину и не имеющий никакого направления; этот «вектор” изображается «отрезком нулевой длины”, т.е. точкой. Но это тоже вектор, который называется нулевым и обозначается символом 0.

    Видео:Сложение векторов. Правило параллелограмма. 9 класс.Скачать

    Сложение векторов. Правило параллелограмма. 9 класс.

    Сложение векторов. Как найти сумму векторов

    Вы будете перенаправлены на Автор24

    Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

    Вектор. Сложение и вычитание. 9 класс | Математика

    Откладывание вектора от данной точки

    Для того, чтобы ввести сумму векторов, сначала необходимо разобраться в таком понятии, как откладывание вектора от данной точки.

    Доказательство коммутативности сложения векторов

    Введем следующую теорему:

    От любой точки $K$ можно отложить вектор $overrightarrow$ и притом только один.

    Доказательство.

    Существование: Здесь нужно рассмотреть два случая:

    В этом случае, очевидно, что искомый вектор — вектор $overrightarrow$.

    Доказательство коммутативности сложения векторов

    Рисунок 2. Иллюстрация теоремы 1

    Единственность: единственность сразу следует из построения, проведенного в пункте «существование».

    Теорема доказана.

    Видео:ТОПОВЫЙ СПОСОБ СЛОЖЕНИЯ ВЕКТОРОВСкачать

    ТОПОВЫЙ СПОСОБ СЛОЖЕНИЯ ВЕКТОРОВ

    Сложение векторов. Правило треугольника

    Пусть нам даны векторы $overrightarrow$ и $overrightarrow$.

    Доказательство коммутативности сложения векторов

    Рисунок 3. Сумма векторов

    Готовые работы на аналогичную тему

    Иначе, определение 2, еще называют правилом треугольника для сложения двух векторов.

    Из этого правила следует несколько свойств сложения двух векторов:

    Для любого вектора $overrightarrow$ выполняется равенство

    Для любых произвольных точек $A, B и C$ выполняется равенство

    Аналогично правилу треугольника можно строить сумму любого количества векторов. Такое правило сложения называется правилом многоугольника.

    Видео:СУММА ВЕКТОРОВ правило треугольникаСкачать

    СУММА ВЕКТОРОВ правило треугольника

    Правило параллелограмма

    Помимо правила треугольника для сложения двух векторов, есть еще правило параллелограмма для сложения двух векторов. Сформулируем и докажем для начала следующую теорему.

    Доказательство.

    Переместительный закон:

    Доказательство коммутативности сложения векторов

    Рисунок 4. Иллюстрация переместительного закона

    Тогда выполнение переместительно закона будет очевидно вытекать из равенства длин $left|overrightarrow+overrightarrowright|и |overrightarrow+overrightarrow|$.

    Сочетательный закон:

    Доказательство коммутативности сложения векторов

    Рисунок 5. Иллюстрация сочетательного закона

    Из свойства правила треугольника $overrightarrow+overrightarrow=overrightarrow$, получим:

    Теорема доказана.

    Видео:Сложение векторов теорема.Скачать

    Сложение векторов теорема.

    Пример задачи на сложение векторов

    Дан четырехугольник $ABCD$. Доказать, что $overrightarrow+overrightarrow+overrightarrow=overrightarrow$

    Доказательство коммутативности сложения векторов

    Доказательство.

    Воспользуемся свойством правила треугольника $overrightarrow+overrightarrow=overrightarrow$, получим:

    ч. т. д.

    Получи деньги за свои студенческие работы

    Курсовые, рефераты или другие работы

    Автор этой статьи Дата последнего обновления статьи: 01 04 2022

    💥 Видео

    Сложение векторов, свойства сложения векторов.Скачать

    Сложение векторов, свойства сложения векторов.

    §2 Линейная операция над векторамиСкачать

    §2 Линейная операция над векторами

    18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

    18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

    СКАЛЯРНОЕ УМНОЖЕНИЕ ВЕКТОРОВ ЧАСТЬ I #математика #егэ #огэ #формулы #профильныйегэ #векторыСкачать

    СКАЛЯРНОЕ УМНОЖЕНИЕ ВЕКТОРОВ ЧАСТЬ I #математика #егэ #огэ #формулы #профильныйегэ #векторы

    Коллинеарность векторовСкачать

    Коллинеарность векторов

    §15 Коллинеарность векторовСкачать

    §15 Коллинеарность векторов

    10 класс, 43 урок, Компланарные векторыСкачать

    10 класс, 43 урок, Компланарные векторы

    Сложение и вычитание векторов. Практическая часть. 11 класс.Скачать

    Сложение и вычитание векторов. Практическая часть. 11 класс.

    89. Разложение вектора по двум неколлинеарным векторамСкачать

    89. Разложение вектора по двум неколлинеарным векторам

    Сложение векторов. 9 класс.Скачать

    Сложение векторов. 9 класс.

    СЛОЖЕНИЕ ВЕКТОРОВ закон правило треугольника 9 класс АтанасянСкачать

    СЛОЖЕНИЕ ВЕКТОРОВ закон правило треугольника 9 класс Атанасян

    Умножение вектора на число. 9 класс.Скачать

    Умножение вектора на число. 9 класс.

    ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэСкачать

    ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэ
    Поделиться или сохранить к себе: