Даны три стороны треугольника найти радиус описанной окружности

Нахождение радиуса описанной вокруг треугольника окружности

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.

Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Формулы вычисления радиуса описанной окружности

Произвольный треугольник

Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:

Даны три стороны треугольника найти радиус описанной окружности

Даны три стороны треугольника найти радиус описанной окружности

где a, b, c – стороны треугольника, S – его площадь.

Прямоугольный треугольник

Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.

Даны три стороны треугольника найти радиус описанной окружности

Равносторонний треугольник

Радиус описанной около правильного треугольника окружности вычисляется по формуле:

Даны три стороны треугольника найти радиус описанной окружности

Даны три стороны треугольника найти радиус описанной окружности

где a – сторона треугольника.

Видео:ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэ

Примеры задач

Задание 1
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.

Решение
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:

Даны три стороны треугольника найти радиус описанной окружности

Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:

Даны три стороны треугольника найти радиус описанной окружности

Задание 2
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.

Решение
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:

Даны три стороны треугольника найти радиус описанной окружности

Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Теорема синусов

Даны три стороны треугольника найти радиус описанной окружности

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

Доказательство теоремы синусов

Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.

Нарисуем стандартный треугольник и запишем теорему формулой:

Даны три стороны треугольника найти радиус описанной окружности

Формула теоремы синусов:

Даны три стороны треугольника найти радиус описанной окружности

Докажем теорему с помощью формулы площади треугольника через синус его угла.

Даны три стороны треугольника найти радиус описанной окружности

Из этой формулы мы получаем два соотношения:


    Даны три стороны треугольника найти радиус описанной окружности

Даны три стороны треугольника найти радиус описанной окружности
На b сокращаем, синусы переносим в знаменатели:
Даны три стороны треугольника найти радиус описанной окружности

  • Даны три стороны треугольника найти радиус описанной окружности
    bc sinα = ca sinβ
    Даны три стороны треугольника найти радиус описанной окружности
  • Из этих двух соотношений получаем:

    Даны три стороны треугольника найти радиус описанной окружности

    Теорема синусов для треугольника доказана.

    Эта теорема пригодится, чтобы найти:

    • Стороны треугольника, если даны два угла и одна сторона.
    • Углы треугольника, если даны две стороны и один прилежащий угол.

    Видео:Задача № 27933 ЕГЭ по математике. Урок 147Скачать

    Задача № 27933 ЕГЭ по математике. Урок 147

    Доказательство следствия из теоремы синусов

    У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.

    Даны три стороны треугольника найти радиус описанной окружности

    Даны три стороны треугольника найти радиус описанной окружности

    где R — радиус описанной около треугольника окружности.

    Так образовались три формулы радиуса описанной окружности:

    Даны три стороны треугольника найти радиус описанной окружности

    Основной смысл следствия из теоремы синусов заключен в этой формуле:

    Даны три стороны треугольника найти радиус описанной окружности

    Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.

    Для доказательства следствия теоремы синусов рассмотрим три случая.

    1. Угол ∠А = α — острый в треугольнике АВС.

    Даны три стороны треугольника найти радиус описанной окружности

    Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.

    Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.

    Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.

    BA1 = 2R, где R — радиус окружности

    Следовательно: R = α/2 sinα

    Для острого треугольника с описанной окружностью теорема доказана.

    2. Угол ∠А = α — тупой в треугольнике АВС.

    Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.

    Следовательно, ∠А1 = 180° — α.

    Даны три стороны треугольника найти радиус описанной окружности

    Вспомним свойство вписанного в окружность четырёхугольника:

    Даны три стороны треугольника найти радиус описанной окружности

    Также известно, что sin(180° — α) = sinα.

    В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:

    α = 2R sin (180° — α) = 2R sinα

    Следовательно: R = α/2 sinα

    Для тупого треугольника с описанной окружностью теорема доказана.

    Часто используемые тупые углы:

    • sin120° = sin(180° — 60°) = sin60° = 3/√2;
    • sin150° = sin(180° — 30°) = sin30° = 1/2;
    • sin135° = sin(180° — 45°) = sin45° = 2/√2.

    3. Угол ∠А = 90°.

    Даны три стороны треугольника найти радиус описанной окружности

    В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.

    Даны три стороны треугольника найти радиус описанной окружности

    Для прямоугольного треугольника с описанной окружностью теорема доказана.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:Задача 6 №27909 ЕГЭ по математике. Урок 129Скачать

    Задача 6 №27909 ЕГЭ по математике. Урок 129

    Теорема о вписанном в окружность угле

    Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.

    Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.

    Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.

    Даны три стороны треугольника найти радиус описанной окружности

    ∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.

    Формула теоремы о вписанном угле:

    Даны три стороны треугольника найти радиус описанной окружности

    Следствие 1 из теоремы о вписанном в окружность угле

    Вписанные углы, опирающиеся на одну дугу, равны.

    Даны три стороны треугольника найти радиус описанной окружности

    ∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).

    Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:

    Даны три стороны треугольника найти радиус описанной окружности

    На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.

    Следствие 2 из теоремы о вписанном в окружность угле

    Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.

    Даны три стороны треугольника найти радиус описанной окружности

    ВС — диаметр описанной окружности, следовательно ∠COB = 180°.

    Даны три стороны треугольника найти радиус описанной окружности

    Следствие 3 из теоремы о вписанном в окружность угле

    Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:

    Даны три стороны треугольника найти радиус описанной окружности

    Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.

    Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.

    Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.

    Следовательно: α + γ = 180°.

    Поэтому: ∠A + ∠C = 180°.

    Следствие 4 из теоремы о вписанном в окружность угле

    Синусы противоположных углов вписанного четырехугольника равны. То есть:

    sinγ = sin(180° — α)

    Так как sin(180° — α) = sinα, то sinγ = sin(180° — α) = sinα

    Видео:Задача 6 №27934 ЕГЭ по математике. Урок 148Скачать

    Задача 6 №27934 ЕГЭ по математике. Урок 148

    Примеры решения задач

    Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.

    Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.

      Согласно теореме о сумме углов треугольника:

    ∠B = 180° — 45° — 15° = 120°

  • Сторону AC найдем по теореме синусов:
    Даны три стороны треугольника найти радиус описанной окружности
  • Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.

    В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:

    Даны три стороны треугольника найти радиус описанной окружности

    Даны три стороны треугольника найти радиус описанной окружности

    Значит x = sin (4/5) ≈ 53,1°.

    Ответ: угол составляет примерно 53,1°.

    Видео:№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

    №706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

    Запоминаем

    Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.

    >
    Даны три стороны треугольника найти радиус описанной окружности

    Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:

    Видео:Формулы для радиуса окружности #shortsСкачать

    Формулы для радиуса окружности #shorts

    Радиус описанной около треугольника окружности

    Радиус описанной около треугольника окружности можно найти по одной из двух общих формул.

    Кроме того, для правильного и прямоугольного треугольников существуют дополнительные формулы.

    Радиус описанной около произвольного треугольника окружности

    Даны три стороны треугольника найти радиус описанной окружности

    Даны три стороны треугольника найти радиус описанной окружности

    То есть радиус описанной окружности равен отношению длины стороны треугольника к удвоенному синусу противолежащего этой стороне угла.

    В общем виде эту формулу записывают так:

    Даны три стороны треугольника найти радиус описанной окружности

    Даны три стороны треугольника найти радиус описанной окружности

    Даны три стороны треугольника найти радиус описанной окружности

    То есть чтобы найти радиус описанной около треугольника окружности, надо произведения длин сторон треугольника разделить на четыре площади треугольника.

    Если площадь треугольника находить по формуле Герона

    Даны три стороны треугольника найти радиус описанной окружности

    где p — полупериметр,

    Даны три стороны треугольника найти радиус описанной окружности

    то получим формулу радиуса описанной около треугольника окружности через длины сторон:

    Даны три стороны треугольника найти радиус описанной окружности

    Даны три стороны треугольника найти радиус описанной окружности

    Обе эти формулы можно применить к треугольнику любого вида. Следует только учесть положение центра.

    Центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы.

    Центр описанной около тупоугольного треугольника окружности лежит вне треугольника, напротив тупого угла.

    Радиус окружности, описанной около прямоугольного треугольника

    Даны три стороны треугольника найти радиус описанной окружностиФормула:

    Даны три стороны треугольника найти радиус описанной окружности

    То есть в прямоугольном треугольнике радиус описанной окружности равен половине гипотенузы.

    Обычно гипотенузу обозначают через c (AB=c) и формулу записывают так:

    Даны три стороны треугольника найти радиус описанной окружности

    Радиус окружности, описанной около правильного треугольника

    Даны три стороны треугольника найти радиус описанной окружности

    Даны три стороны треугольника найти радиус описанной окружности

    Если без иррациональности в знаменателе, то

    Даны три стороны треугольника найти радиус описанной окружности

    В равностороннем треугольнике радиус описанной окружности в два раза больше радиуса вписанной окружности:

    🌟 Видео

    Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

    Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

    Задача 6 №27910 ЕГЭ по математике. Урок 130Скачать

    Задача 6 №27910 ЕГЭ по математике. Урок 130

    Три способа нахождения радиуса описанной окружности вокруг треугольникаСкачать

    Три способа нахождения радиуса описанной окружности вокруг треугольника

    Окружность вписанная в треугольник и описанная около треугольника.Скачать

    Окружность вписанная в треугольник и описанная около треугольника.

    Задание 16 ОГЭ по математике. Окружность вписана в равносторонний треугольник.Скачать

    Задание 16 ОГЭ по математике. Окружность вписана в  равносторонний  треугольник.

    Задание 16 ОГЭ по математике. Две окружности одна описана около квадрата, другая вписана в него.Скачать

    Задание 16 ОГЭ по математике. Две окружности одна  описана около квадрата, другая вписана в него.

    Найти радиус вписанной и описанной окружностей равностороннего треугольника. Разные способы.Скачать

    Найти радиус вписанной и описанной окружностей равностороннего треугольника. Разные способы.

    Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математикеСкачать

    Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математике

    Вписанные и описанные окружности. Геометрия 9 класс. Ключевая задача № 3.Скачать

    Вписанные и описанные окружности. Геометрия 9 класс. Ключевая задача № 3.

    Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

    Окружность вписана в равнобедренный треугольник. Найти её радиус.

    Всё про углы в окружности. Геометрия | МатематикаСкачать

    Всё про углы в окружности. Геометрия  | Математика
    Поделиться или сохранить к себе: