Даны два вектора найти третий

Решение задач с векторами онлайн.

Если у вас возникли затруднения при решении задач с векторами, воспользуйтесь калькуляторами для решения задач с векторами онлайн. Используя, онлайн калькуляторы с векторами вы сможете решать задачи с векторами или проверить полученные вами решения. Для лучшего усвоения материала калькуляторы с векторами выдают не только ответ, но и детальный ход решения задач.

Здесь представлены калькуляторы, которые помогут справиться с большинством школьных, институтских и университетских задач с векторами.

Видео:Найдите разложение вектора по векторам (базису)Скачать

Найдите разложение вектора по векторам (базису)

Векторное произведение векторов

Даны два вектора найти третий

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Видео:Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

Определение векторного произведения

Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.

Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.

Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.

Даны два вектора найти третий

Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.

Коллинеарность — отношение параллельности векторов. Два ненулевых вектора называются коллинеарными, если они лежат на параллельных прямых или на одной прямой.

Проще говоря это «параллельные» векторы. Коллинеарные векторы могут быть одинаково направлены или противоположно направлены. Основное обозначение — →a || →b. Сонаправленные коллинеарные векторы обозначаются так →a ↑↑ →b, противоположно направленные — →a ↑↓ →b.

Прежде чем дать определение векторного произведения, разберемся с ориентацией упорядоченной тройки векторов →a, →b, →c в трехмерном пространстве.

Отложим векторы →a, →b, →c от одной точки. В зависимости от направления вектора →c тройка →a, →b, →c может быть правой или левой.

Посмотрим с конца вектора →c на то, как происходит кратчайший поворот от вектора →a к →b. Если кратчайший поворот происходит против часовой стрелки, то тройка векторов →a, →b, →c называется правой, по часовой стрелке — левой.

Даны два вектора найти третий

Теперь возьмем два неколлинеарных вектора →a и →b. Отложим от точки А векторы →AB = →a и →AC = →b. Построим некоторый вектор →AD = →c, перпендикулярный одновременно и →AB и →AC.

Очевидно, что при построении вектора →AD = →c мы можем поступить по-разному, если зададим ему либо одно направление, либо противоположное.

Даны два вектора найти третий

В зависимости от направления вектора →AD = →c упорядоченная тройка векторов →a, →b, →c может быть правой или левой.

И сейчас мы подошли к определению векторного произведения. Оно дается для двух векторов, которые заданы в прямоугольной системе координат трехмерного пространства.

Еще не устали от теории? Онлайн-школа Skysmart предлагает обучение на курсах по математике — много практики и поддержка внимательных преподавателей!

Векторным произведением двух векторов →a и →b, которые заданы в прямоугольной системе координат трехмерного пространства, называется такой вектор →c, что:

  • он является нулевым, если векторы →a и →b коллинеарны;
  • он перпендикулярен и вектору →a и вектору →b;
    Даны два вектора найти третий
  • длина векторного произведения равна произведению длин векторов →a и →b на синус угла между ними
    Даны два вектора найти третий
  • тройка векторов →a, →b, →c ориентирована так же, как и заданная система координат.

Векторным произведением вектора →a на вектор →b называется вектор →c, длина которого численно равна площади параллелограмма построенного на векторах →a и →b, перпендикулярный к плоскости этих векторов и направленный так, чтобы наименьшее вращение от →a к →b вокруг вектора c осуществлялось против часовой стрелки, если смотреть с конца вектора →c.

Даны два вектора найти третий

Векторное произведение двух векторов a = и b = в декартовой системе координат — это вектор, значение которого можно вычислить, используя формулы вычисления векторного произведения векторов:

  • Даны два вектора найти третий
  • Даны два вектора найти третий

Векторное произведение векторов →a и →b обозначается как [→a • →b].

Другое определение связано с правой рукой человека, откуда и есть название. На рисунке тройка векторов →a, →b, [→a • →b] является правой.

Даны два вектора найти третий

Еще есть аналитический способ определения правой и левой тройки векторов — он требует задания в рассматриваемом пространстве правой или левой системы координат, причём не обязательно прямоугольной и ортонормированной.

Нужно составить матрицу, первой строкой которой будут координаты вектора →a, второй — вектора →b, третьей — вектора →c. Затем, в зависимости от знака определителя этой матрицы, можно сделать следующие выводы:

  • Если определитель положителен, то тройка векторов имеет ту же ориентацию, что и система координат.
  • Если определитель отрицателен, то тройка векторов имеет ориентацию, противоположную ориентации системы координат.
  • Если определитель равен нулю, то векторы компланарны (линейно зависимы).

Видео:№411. Даны векторы а{ — 1; 1; 1}, b{0; 2; —2}, с { — 3; 2; 0} и d{ — 2; 1; —2}. Найдите координатыСкачать

№411. Даны векторы а{ — 1; 1; 1}, b{0; 2; —2}, с { — 3; 2; 0} и d{ — 2; 1; —2}. Найдите координаты

Координаты векторного произведения

Рассмотрим векторное произведение векторов в координатах.

Сформулируем второе определение векторного произведения, которое позволяет находить его координаты по координатам заданных векторов.

В прямоугольной системе координат трехмерного пространства векторное произведение двух векторов →a = (ax, ay, az) и →b = (bx, by, bz) есть вектор

Даны два вектора найти третий

→i, →j, →k — координатные векторы.

Это определение показывает нам векторное произведение в координатной форме.

Векторное произведение удобно представлять в виде определителя квадратной матрицы третьего порядка, первая строка которой есть орты →i, →j, →k, во второй строке находятся координаты вектора →a, а в третьей — координаты вектора →b в заданной прямоугольной системе координат:

Даны два вектора найти третий

Если разложим этот определитель по элементам первой строки, то получим равенство из определения векторного произведения в координатах:

Даны два вектора найти третий

Важно отметить, что координатная форма векторного произведения согласуется с определением,которое мы дали в первом пункте этой статьи. Более того, эти два определения векторного произведения эквивалентны.

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Свойства векторного произведения

Векторное произведение в координатах представляется в виде определителя матрицы:

Даны два вектора найти третий

На основании свойств определителя можно легко обосновать свойства векторного произведения векторов:

  1. Антикоммутативность
    Даны два вектора найти третий
  2. Свойство дистрибутивности
    Даны два вектора найти третий

Даны два вектора найти третий
Сочетательное свойство
Даны два вектора найти третий

Даны два вектора найти третий

, где λ произвольное действительное число.

Для большей ясности докажем свойство антикоммутативности векторного произведения.

Даны два вектора найти третий

Даны два вектора найти третий

Нам известно, что значение определителя матрицы изменяется на противоположное, если переставить местами две строки, поэтому

Даны два вектора найти третий

что доказывает свойство антикоммутативности векторного произведения.

Чтобы найти модуль векторного произведения векторов u и v нужно найти площадь параллелограмма, который построен на данных векторах: S = | u × v | = | u | * | v | * sinθ, где θ — угол между векторами.

Векторное произведение векторов u и v равно нулевому вектору, если u и v параллельны (коллинеарны): u × v = 0, если u ∥ v (θ = 0).

Видео:Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Примеры решения задач

Пример 1

а) Найти длину векторного произведения векторов →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.

б) Найти площадь параллелограмма, построенного на векторах →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.

а) По условию требуется найти длину векторного произведения. Подставляем данные в формулу:

Даны два вектора найти третий

Даны два вектора найти третий

Так как в задаче речь идет о длине, то в ответе указываем размерность — единицы.

б) По условию требуется найти площадь параллелограмма, который построен на векторах →a и →b. Площадь такого параллелограмма численно равна длине векторного произведения:

Даны два вектора найти третий

Даны два вектора найти третий

Пример 2

Найти |[-3→a x 2→b]|, если |→a| = 1/2, |→b| = 1/6, ∠(→a, →b) = π/2.

По условию снова нужно найти длину векторного произведения. Используем нашу формулу:

Даны два вектора найти третий

Согласно ассоциативным законам, выносим константы за переделы векторного произведения.

Выносим константу за пределы модуля, при этом модуль позволяет убрать знак минус. Длина же не может быть отрицательной.

Даны два вектора найти третий

Пример 3

Даны вершины треугольника A (0, 2, 0), B (-2, 5,0), C (-2, 2, 6). Найти его площадь.

Сначала найдём векторы:

Даны два вектора найти третий

Затем векторное произведение:

Даны два вектора найти третий

Вычислим его длину:

Даны два вектора найти третий

Подставим данные в формулы площадей параллелограмма и треугольника:

Даны два вектора найти третий

Даны два вектора найти третий

Видео:Координаты вектора. 9 класс.Скачать

Координаты вектора. 9 класс.

Геометрический смысл векторного произведения

По определению длина векторного произведения векторов равна

Даны два вектора найти третий

А из курса геометрии средней школы мы знаем, что площадь треугольника равна половине произведения длин двух сторон треугольника на синус угла между ними.

Поэтому длина векторного произведения равна удвоенной площади треугольника, имеющего сторонами векторы →a и →b, если их отложить от одной точки. Проще говоря, длина векторного произведения векторов →a и →b равна площади параллелограмма со сторонами |→a| и |→b| и углом между ними, равным (→a, →b). В этом состоит геометрический смысл векторного произведения.

Даны два вектора найти третий

Видео:Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?Скачать

Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?

Физический смысл векторного произведения

В механике — одном из разделов физики — благодаря векторному произведению можно определить момент силы относительно точки пространства. Поэтому сформулируем еще одно важное определение.

Под моментом силы →F, приложенной к точке B, относительно точки A понимается следующее векторное произведение [→A B × →F].

Даны два вектора найти третий

Вектор линейной скорости →V точки M колеса равен векторному произведению вектора угловой скорости →W и радиус-вектора точки колеса, то есть →V = →W`→rM.

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Задача 52719 .

Условие

Даны два вектора найти третий

Помогите пожалуйста решить задачу. Заранее спасибо! Даны векторы a = (1, −1, 0), b = (1, −2, 1). Найти вектор c длины √3, компланарный векторам a и b, ортогональный вектору d = (2, 1, 1) и направленный так, что тройка a, d,c — левая.

Решение

Даны два вектора найти третий

Пусть вектор vector=(x;y;z)

По условию |vector|=sqrt(3) ⇒ [b]x^2+y^2+z^2=3[/b]

По условию вектор vector компланарный векторам vector и vector

[m]begin x & y & z \ 1 & -1 &0 \ 1 &-2 & 1 end=0[/m]

⇒ Раскрываем определитель третьего порядка:

По условию вектор vector ортогональный вектору vector

⇒ скалярное произведение векторов vector*vector=0

2y^2=3 ⇒ y= ± sqrt(3/2)

О т в е т. (0; sqrt(3/2); — sqrt(3/2)); (0; -sqrt(3/2); sqrt(3/2))

🔥 Видео

Длина вектора через координаты. 9 класс.Скачать

Длина вектора через координаты. 9 класс.

Векторное произведение векторов | Высшая математикаСкачать

Векторное произведение векторов | Высшая математика

Нахождение координат вектора. Практическая часть. 9 класс.Скачать

Нахождение координат вектора. Практическая часть. 9 класс.

Координаты вектора в пространстве. 11 класс.Скачать

Координаты вектора  в пространстве. 11 класс.

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)

Скалярное произведение векторов. 9 класс.Скачать

Скалярное произведение векторов. 9 класс.

9 класс, 2 урок, Координаты вектораСкачать

9 класс, 2 урок, Координаты вектора

Координаты точки и координаты вектора 1.Скачать

Координаты точки и координаты вектора 1.

№933. Найдите координаты вершины D параллелограмма ABCD, если А (0; 0), B (5; 0), С (12; -3.).Скачать

№933. Найдите координаты вершины D параллелограмма ABCD, если А (0; 0), B (5; 0), С (12; -3.).

Математика без Ху!ни. Смешанное произведение векторовСкачать

Математика без Ху!ни. Смешанное произведение векторов

Выразить векторы. Разложить векторы. Задачи по рисункам. ГеометрияСкачать

Выразить векторы. Разложить векторы. Задачи по рисункам. Геометрия

Коллинеарность векторовСкачать

Коллинеарность векторов
Поделиться или сохранить к себе: