Дана функция и вектор найти gradz

Как найти градиент

Решение находим с помощью калькулятора.
Градиент grad u

grad u в точке А

Вектор а(2;-1;0)
Направляющие углы

Модуль вектора |a| .

Производная в точке А по направлению вектора а .

Пример №2 . Найти grad u в точке М(0,0,0), если u=х*sin(z)-y*cos(z) .
Найти производную функции u=х*y 2 +z 3 -x*y*z в точке М(1,1,2) в направлении, образующем с осями координат углы соответственно в 60 о , 45 о , 60 о .

Пример №3 . Даны функция z = f(x,y) , точка A и вектор a . Найти: 1) наибольшую скорость возрастания функции в точке A ; 2) скорость изменения функции в точке A по направлению вектора a.
z = ln(x 2 + 3y 2 ), A(1,1), a(3,2).
Примечание: наибольшая скорость возрастания функции в указанной точке равна модулю градиента функции в этой точке.
Скачать решение

Задача 1. Найти проекции grad z в точке М(1,2) , где z=ln(4x 2 -y).

Задача 2. Найти производную функции z=х 3 -3x 2 y +3xy 2 +1 в точке М(3,1) в направлении, идущем от этой точки к точке N(6,5) .

Задача 3. Даны функция z = f(x,y) , точка A(x0,y0) и вектор a(a1,a2). Найти:
1) grad z в точке A ;
2) производную в точке A по направлению вектора a .
Решение.
z = ln(5x 2 +3y 2 ), A(1;1), a(3;2)
Скачать решение

Видео:Производная по направлениюСкачать

Производная по направлению

Градиент функции онлайн

Градиент функции — это вектор координатами которого являются частные производные этой функции по всем её переменным.

Градиент обозначается символом набла . Выражение градиента некоторой функции записывается следующим образом:

где , , — частные производные функции по переменным , , соответственно.

Вектор градиента указывает направление наискорейшего роста функции. Рассмотрим график функции .

Дана функция и вектор найти gradz

Эта функция достигает своего единственного максимума в точке . График градиентного поля данной функции имеет вид:

Дана функция и вектор найти gradz

Из данного градика видно, что в каждой точке вектор градиента направлен в сторону наискорейшего роста функции, т.е. в точку . При этом модуль вектора отражает скорость роста (крутизну подъёма) функции в этом направлении.

Задача вычисления градиента функции очень часто возникает при поиске эстремумов функции с использованием различных численных методов.

Наш онлайн калькулятор позволяет вычислить градиент практически любой функции как общем виде, так и в конкретной точке с описанием подробного хода решения на русском языке.

Видео:10. ФНП. Градиент и производная по направлению функции двух переменных.Скачать

10. ФНП. Градиент и производная по направлению функции двух переменных.

Нахождение градиента вектор-функции

Дата публикации Oct 20, 2018

Дана функция и вектор найти gradz

ВЧасть 1Нам поставили задачу: вычислить градиент этой функции потерь:

Дана функция и вектор найти gradz

Чтобы найти градиент, мы должны найти производную функцию. ВЧасть 2мы научились вычислять частную производную функции по каждой переменной. Однако большинство переменных в этой функции потерь являются векторами. Возможность найти частную производную векторных переменных особенно важна, поскольку нейронная сеть работает с большими объемами данных. Векторные и матричные операции — это простой способ представления операций с таким большим количеством данных. Как именно вы можете найти градиент вектор-функции?

Видео:Математика без Ху!ни. Частные производные функции нескольких переменных. Градиент.Скачать

Математика без Ху!ни. Частные производные функции нескольких переменных. Градиент.

Градиент скалярной функции

Скажи, что у нас есть функция,f (x, y) = 3x²y, Наши частные производные:

Дана функция и вектор найти gradz

Если мы организуем эти части в горизонтальный вектор, мы получимградиентизР (х, у), или∇ f (x, y):

Дана функция и вектор найти gradz

6yxэто изменение вР (х, у)в отношении изменения вИкс, в то время как3x²это изменение вР (х, у)в отношении изменения вY,

Что происходит, когда у нас есть две функции? Давайте добавим еще одну функцию,g (x, y) = 2x + y⁸, Частные производные:

Дана функция и вектор найти gradz

Таким образом, градиент g (x, y):

Дана функция и вектор найти gradz

Видео:Производная по направлениюСкачать

Производная по направлению

Представляющие функции

Когда у нас есть несколько функций с несколькими параметрами, часто полезно представлять их более простым способом. Мы можем объединить несколько параметров функций в один векторный аргумент,Иксэто выглядит следующим образом:

Дана функция и вектор найти gradz

Следовательно,Р (х, у, г)станетF (x₁, x₂, x₃)который становитсяе (Икс).

Мы также можем объединить несколько функций в вектор, например так:

Дана функция и вектор найти gradz

В настоящее время,у = F (X)гдеF (X)является вектором из [f₁ (Икс), f₂ (Икс), f₃ (Икс) . п (Икс)]

Для нашего предыдущего примера с двумя функциями,f (x, y) ⇒ f (Икс)а такжеg (x, y) ⇒ g (Икс).Здесь векторИкс= [x₁, x₂], гдеx₁ = х, а такжеx₂ = у, Чтобы упростить его еще больше, мы можем объединить наши функции: [f (Икс),г(Икс)] = [f₁ (Икс), f₂ (Иксзнак равноf (x) = y.

Дана функция и вектор найти gradz

Зачастую количество функций и количество переменных будет одинаковым, поэтому для каждой переменной существует решение.

Видео:Производная по вектору и по направлению. Градиент. Примеры.Скачать

Производная по вектору и по направлению. Градиент. Примеры.

Градиент вектор-функции

Теперь, когда у нас есть две функции, как мы можем найти градиент обеих функций? Если мы организуем оба их градиента в одну матрицу, мы переместимся из векторного исчисления в матричное исчисление. Эта матрица и организация градиентов нескольких функций с несколькими переменными, известна какМатрица Якобиана,

Дана функция и вектор найти gradz

Есть несколько способов представления якобиана. Этот макет, где мы укладываем градиенты по вертикали, известен какмакет числителя, но другие документы будут использоватьрасположение знаменателя, который просто переворачивает его по диагонали:

Дана функция и вектор найти gradz

Видео:Нахождение градиента функции в точкеСкачать

Нахождение градиента функции в точке

Градиент функции идентичности

Давайте возьмем функцию идентичности,у = ф (х) = х, гдеFi (Икс) = xiи найдите его градиент:

Дана функция и вектор найти gradz

Так же, как мы создали наш предыдущий якобиан, мы можем найти градиенты каждой скалярной функции и сложить их вертикально, чтобы создать якобиан тождественной функции:

Дана функция и вектор найти gradz

Поскольку это функция идентичности, f₁ (Икс) = x₁, f₂ (Икс) = х₂ и тд. Следовательно,

Дана функция и вектор найти gradz

Частичная производная функции по переменной, которой нет в функции, равна нулю. Например, частная производная 2x² по y равна 0. Другими словами,

Дана функция и вектор найти gradz

Поэтому все, что не на диагонали якобиана, становится равным нулю. Между тем, частная производная любой переменной по отношению к себе равна 1. Например, частная производнаяИксв отношенииИксравен 1. Следовательно, якобиан становится:

Дана функция и вектор найти gradz

Видео:АЛГЕБРА С НУЛЯ — Что такое Производная?Скачать

АЛГЕБРА С НУЛЯ — Что такое Производная?

Градиент комбинаций вектор-векторных функций

Элементарные бинарные операторыявляются операциями (такими как сложениевес+Иксиливес>Икскоторый возвращает вектор единиц и нулей), который применяет оператор последовательно, начиная с первого элемента обоих векторов, чтобы получить первый элемент вывода, затем второго элемента обоих векторов, чтобы получить второй элемент вывода… и так далее.

Эта статья представляет поэлементные бинарные операции с такими обозначениями:

Дана функция и вектор найти gradz

Здесь ◯ означает любой поэлементный оператор (например, +), а не композицию функций.

Итак, как вы находите градиент поэлементной операции двух векторов?

Поскольку у нас есть два набора функций, нам нужны два якобиана, один из которых представляет градиент относительноИкси один по отношению квес:

Дана функция и вектор найти gradz

Дана функция и вектор найти gradz

Большинство арифметических операций нам понадобятся простые, поэтомуе (ш)часто просто векторвес, Другими словами,Fi (Wi) = Wi, Например, операцияW + хподходит к этой категории, так как она может быть представлена ​​каке (ж) + д (х)гдеfi (wi) + gi (xi) = wi + xi.

При этом условии каждый элемент в двух якобианах упрощается до:

Дана функция и вектор найти gradz

Дана функция и вектор найти gradz

На диагонали i = j, поэтому существует значение для частной производной. Вне диагонали, однако, i ≠ j, поэтому частные производные становятся равными нулю:

Дана функция и вектор найти gradz

Мы можем представить это более кратко как:

Дана функция и вектор найти gradz

Дана функция и вектор найти gradz

Попробуем найти градиент функцииW + х, Мы знаем, что все вне диагонали равно 0. Значения частичных по диагонали относительновеса такжеИксявляются:

Дана функция и вектор найти gradz

Итак, оба якобиана имеют диагональ 1. Это выглядит знакомо . это матрица тождеств!

Давайте попробуем это с умножением:ш * х, Значения частностей по диагонали относительновеса такжеИксявляются:

Дана функция и вектор найти gradz

Дана функция и вектор найти gradz

Следовательно, градиент по отношению квесизш * хявляетсяDiag (Икс)в то время как градиент по отношению кИксизш * хявляетсяDiag (вес).

Применяя те же шаги для вычитания и деления, мы можем суммировать все это:

Дана функция и вектор найти gradz

Видео:Градиент в точке.Скачать

Градиент в точке.

Градиент векторных сумм

Одной из наиболее распространенных операций в глубоком обучении является операция суммирования. Как мы можем найти градиент функцииу = сумма (Икс)?

у = сумма (Икс)также может быть представлен как:

Дана функция и вектор найти gradz

Следовательно, градиент может быть представлен как:

Дана функция и вектор найти gradz

А так как частная производная функции по переменной, которой нет в функции, равна нулю, ее можно дополнительно упростить следующим образом:

Дана функция и вектор найти gradz

Обратите внимание, что результатом является горизонтальный вектор.

Как насчет градиентау = сумма (Иксг)? Единственное отличие состоит в том, что мы умножаем каждый частный с константой, z:

Дана функция и вектор найти gradz

Хотя это является производной по отношению кИкс, производная по скаляруZэто просто число:

Дана функция и вектор найти gradz

Видео:Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnlineСкачать

Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnline

Градиент комбинаций векторных функций правила цепочки

ВЧасть 2мы узнали о правилах цепей с несколькими переменными. Однако это работает только для скаляров. Давайте посмотрим, как мы можем интегрировать это в векторные вычисления!

Давайте возьмем векторную функцию,Yзнак равное(Икс)и найти градиент. Давайте определим функцию как:

Дана функция и вектор найти gradz

И то и другоеf₁ (х)а такжеf₂ (х)являются составными функциями. Введем промежуточные переменные дляf₁ (х)а такжеf₂ (х)и переписать нашу функцию:

Дана функция и вектор найти gradz

Теперь мы можем использовать наше правило цепочки переменных, чтобы вычислить производную вектораY, Просто вычислите производнуюf₁ (х)а такжеf₂ (х)и поместите их один над другим:

Дана функция и вектор найти gradz

Вуаля! У нас есть наш градиент. Однако мы пришли к нашему решению со скалярными правилами, просто сгруппировав числа в вектор. Есть ли способ представить правило цепи с несколькими переменными для векторов?

Прямо сейчас наш градиент вычисляется с помощью:

Дана функция и вектор найти gradz

Обратите внимание, что первый член градиентов обоихf₁ (х)а такжеf₂ (х)включает частичноеg₁надИкси второй член градиентов обоихf₁ (х)а такжеf₂ (х)включает частичноеg₂надИкс Это как умножение матриц! Поэтому мы можем представить это как:

Дана функция и вектор найти gradz

Давайте проверим наше новое представление правила цепочки векторов:

Дана функция и вектор найти gradz

Мы получаем тот же ответ, что и скалярный подход! Если вместо одного параметраИксу нас есть векторный параметрИкснам просто нужно немного изменить наше правило, чтобы получить полное правило цепочки векторов:

Дана функция и вектор найти gradz

Дана функция и вектор найти gradz

В нашем примере выше,еэто чисто функцияг; то есть,фиявляется функциейсолдатно нетGJ(каждая функцияесоответствует ровно 1 функцииг),В этом случае все вне диагонали становится равным нулю, и:

Дана функция и вектор найти gradz

Теперь у нас есть все части, которые мы находим в градиенте нейронной сети, с которой мы начали нашу серию:

Дана функция и вектор найти gradz

Проверять, выписыватьсяЧасть 4чтобы узнать, как вычислить его производную!

Если вы еще этого не сделали, прочитайте части 1 и 2:

ЧитатьЧасть 4для грандиозного финала!

Скачать оригинал статьиВот,

Если вам понравилась эта статья, не забудьте оставить несколько хлопков! Оставьте комментарий ниже, если у вас есть какие-либо вопросы или предложения 🙂

🎥 Видео

Производная поля по направлениюСкачать

Производная поля  по направлению

Частные производные функции многих переменныхСкачать

Частные производные функции многих переменных

Вектор-градиент (теория)Скачать

Вектор-градиент  (теория)

Производная по направлению. ТемаСкачать

Производная по направлению. Тема

Полный дифференциалСкачать

Полный дифференциал

Производная по направлениюСкачать

Производная по направлению

Производная в точке А по направлению вектора aСкачать

Производная в точке А по направлению вектора a

ГрадиентСкачать

Градиент

ГрадиентСкачать

Градиент

Видео Лекция МА Тема -2 Градиент и производная по направлениюСкачать

Видео Лекция МА Тема -2 Градиент и производная по направлению

Как разложить вектор по базису - bezbotvyСкачать

Как разложить вектор по базису - bezbotvy
Поделиться или сохранить к себе: