О чем эта статья:
10 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
- Определение параллельности прямых
- Свойства и признаки параллельных прямых
- Задача 1
- Задача 2
- Признаки и свойства параллельных прямых
- Признаки параллельных прямых
- Свойства параллельных прямых
- Параллельные прямые
- Что такое параллельные прямые
- Аксиома параллельных прямых
- Фигуры с параллельными прямыми
- Что мы узнали?
- 📺 Видео
Видео:Параллельные прямые. 6 класс.Скачать
Определение параллельности прямых
Начнем с главного — определимся, какие прямые параллельны согласно евклидовой геометрии. Мы недаром упомянули Евклида, ведь именно в его трудах, написанных за 300 лет до н. э., до нас дошли первые упоминания о параллельности.
Параллельными называются прямые в одной плоскости, не имеющие точек пересечения, даже если их продолжать бесконечно долго. Обозначаются они следующим образом: a II b.
Казалось бы, здесь все просто, но со времен Евклида над определением параллельных прямых и признаками параллельности прямых бились лучшие умы. Особый интерес вызывал 5-й постулат древнегреческого математика: через точку, которая не относится к прямой, в той же плоскости можно провести только одну прямую, параллельную первой. В XIX веке российский математик Н. Лобачевский смог опровергнуть постулат и указать на условия, при которых возможно провести как минимум 2 параллельные прямые через одну точку.
Впрочем, поскольку школьная программа ограничена евклидовой геометрией, вышеуказанное утверждение мы принимаем как аксиому.
На плоскости через любую точку, не принадлежащую некой прямой, можно провести единственную прямую, которая была бы ей параллельна.
Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.
Видео:Параллельные прямые | Математика | TutorOnlineСкачать
Свойства и признаки параллельных прямых
Есть ряд признаков, по которым можно определить, что одна прямая параллельна другой. К счастью, свойства и признаки параллельности прямых тесно связаны, поэтому не придется запоминать много информации.
Начнем со свойств. Для этого проведем третью прямую, пересекающую параллельные прямые — она будет называться секущей. В результате у нас образуется 8 углов.
Если секущая проходит через две параллельные прямые, то:
- два внутренних односторонних угла образуют в сумме 180°:
∠4 + ∠6 = 180°; ∠3 + ∠5 = 180°.
два внутренних накрест лежащих угла равны между собой:
два соответственных угла равны между собой:
∠1 = ∠5, ∠3 = ∠7, ∠4 = ∠8, ∠2 = ∠6.
Вышеуказанные свойства являются одновременно признаками, по которым мы можем сделать вывод о параллельности прямых. Причем достаточно установить и доказать лишь один признак — остальные будут к нему прилагаться.
А сейчас посмотрим, как все это помогает решать задачи и практиковаться в определении параллельности двух прямых.
Задача 1
Прямые MN и KP пересекают две другие прямые, образуя несколько углов. Известно, что ∠1 = 73°; ∠3 = 92°; ∠2 = 73°. Требуется найти величину ∠4.
Решение
Поскольку ∠1 и ∠2 являются соответственными, их равенство говорит о том, что MN II KP. Следовательно, ∠3 = ∠MPK = 92°.
Согласно другому свойству параллельных прямых ∠4 + ∠MPK = 180°.
Задача 2
Две параллельные прямые а и b удалены друг от друга на расстояние 27 см. Секущая к этим прямым образует с одной из них угол в 150°. Требуется найти величину отрезка секущей, расположенного между а и b.
Решение
Поскольку а II b, значит ∠MKD + ∠KDN = 180°.
Соответственно, ∠MKD = 180° — ∠KDN = 180° — 150° = 30°.
Теперь рассмотрим треугольник KDM. Мы знаем, что отрезок DM представляет собой расстояние между прямыми а и b, а значит, DM ┴ b и наш треугольник является прямоугольным.
Поскольку катет, противолежащий углу в 30°, равен ½ гипотенузы, DM = 1/2DK.
Видео:Перпендикулярные и параллельные прямые. Математика 6 классСкачать
Признаки и свойства параллельных прямых
Видео:Математика 6 класс: Параллельные и перпендикулярные прямыеСкачать
Признаки параллельных прямых
1. Если две прямые параллельны третьей прямой, то они являются параллельными:
2. Если две прямые перпендикулярны третьей прямой, то они параллельны:
Остальные признаки параллельности прямых основаны на углах, образующихся при пересечении двух прямых третьей.
3. Если сумма внутренних односторонних углов равна 180°, то прямые параллельны:
Если ∠1 + ∠2 = 180°, то a || b.
4. Если соответственные углы равны, то прямые параллельны:
5. Если внутренние накрест лежащие углы равны, то прямые параллельны:
Видео:Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)Скачать
Свойства параллельных прямых
Утверждения, обратные признакам параллельности прямых, являются их свойствами. Они основаны на свойствах углов, образованных пересечением двух параллельных прямых третьей прямой.
1. При пересечении двух параллельных прямых третьей прямой, сумма образованных ими внутренних односторонних углов равна 180°:
Если a || b, то ∠1 + ∠2 = 180°.
2. При пересечении двух параллельных прямых третьей прямой, образованные ими соответственные углы равны:
3. При пересечении двух параллельных прямых третьей прямой, образованные ими накрест лежащие углы равны:
Следующее свойство является частным случаем для каждого предыдущего:
4. Если прямая на плоскости перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой:
Пятое свойство — это аксиома параллельности прямых:
5. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной прямой:
Видео:Параллельные прямые, 6 классСкачать
Параллельные прямые
Средняя оценка: 4.7
Всего получено оценок: 98.
Средняя оценка: 4.7
Всего получено оценок: 98.
Параллельные прямые находятся повсюду в нашей жизни. Они – основа симметрии, которая, так или иначе, присутствует в каждом элементе мебели, архитектуре и орудиях труда. Знание определения и свойств параллельных прямых помогают не только при решении задач по математике 6 класса, но и при расчетах реальных предметов быта.
Видео:Урок ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕСкачать
Что такое параллельные прямые
Параллельными прямыми называют прямые, которые не пересекаются.
В этом определении параллельных прямых есть небольшая неточность: прямые, которые имеют больше одной общей точки, совпадают. Иногда о них также говорят, как о параллельных.
Прямая, пересекающая параллельные прямые, называется секущей. При пересечений образуется 8 углов. Друг относительно друга они могут быть соответственными, односторонними и накрест лежащими. Рассмотрим их на примере.
Рис. 1. Виды углов.
- Соответственные углы: 7 и 2, 1 и 6, 8 и 4, 3 и 5
- Накрест лежащие: 7 и 5, 8 и 6, 1и 4, 3 и 2
- Односторонние: 1и 2, 3 и 4, 7 и 6, 8 и 5
Видео:6 класс, 44 урок, Параллельные прямыеСкачать
Аксиома параллельных прямых
Аксиома параллельных прямых – это одно из основных утверждений геометрии. Через точку можно провести прямую, параллельную данной, и при том только одну – это наиболее распространенная формулировка аксиому.
Из аксиомы есть два следствия:
- Если прямая параллельна одной из двух параллельных прямых, то она параллельна и второй.
- Если прямая пересекает одну из параллельных прямых, то она пересечет и вторую.
Обратите внимание, что аксиома справедлива только для плоскости. В пространстве может быть вариант, когда прямая параллельна плоскости, в которой будет бесконечное множество параллельных ей прямых, проходящих через одну точку. Значит в пространстве это условие не обязательно выполняется.
Расстояние между параллельными прямыми в любой точке будет одинаковым и равным величине отрезка, перпендикулярного каждой из прямых.
Видео:Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать
Фигуры с параллельными прямыми
Существует множество фигур, при построении которых используются параллельные прямые. Например, параллелограмм состоит из двух попарно параллельных отрезков.
Квадрат и прямоугольник также состоят из попарно параллельных прямых, но при этом они являются частным случаем параллелограмма.
В треугольнике средняя линия всегда параллельна основанию.
Рис. 2. Средняя линия треугольника.
Также есть еще одна интересная фигура: трапеция. В трапеции большое и малое основание параллельны друг другу, а боковые стороны не параллельны.
Рис. 3. Трапеция.
Если прямые непараллельны, то они пересекаются, но если не параллельны отрезки, это вовсе не значит, что они пересекутся. Отрезки имеют конечное значение длинны, а поэтому могут просто стоять отдельно друг от друга. При этом, отдельных видов или каких-либо таблиц параллельных прямых нет, и вряд ли они когда-нибудь появятся.
Видео:Параллельные прямые. Свойства параллельных прямых.Скачать
Что мы узнали?
Мы узнали все о параллельных прямых, привели аксиому параллельных прямых и следствия из нее. Поговорили о различии понятий параллельных прямых и параллельных отрезков, а также выяснили, почему аксиома для параллельных прямых работает только на плоскости. Привели примеры фигур, для построения которых требуются параллельные прямые.
📺 Видео
Параллельные прямые — Признак Параллельности Прямых и Свойства УгловСкачать
Математика 6 класс. Параллельность прямыхСкачать
Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать
Это пора запомнить! Свойства углов при параллельных прямых и секущей. #геометрияСкачать
Параллельные и перпендикулярные прямые.Скачать
6 .7 кл Построение параллельных прямых.Как построить параллельные прямыеСкачать
Перпендикулярные прямые. 6 класс.Скачать
Свойства параллельных прямых - 7 класс геометрияСкачать
Как провести множество параллельных или перпендикулярных прямых без транспортира?Скачать
СВОЙСТВА ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ. §15 геометрия 7 классСкачать