Четырёхугольник ABCD вписан в окружность, причём диаметром окружности является его диагональ AC. Также известно, что в ABCD можно вписать окружность.
а) Докажите, что отрезки AC и BD перпендикулярны.
б) Найдите радиус вписанной окружности четырёхугольника ABCD, если AC = 26 и BD = 10.
а) Пусть BD и AC пересекаются в точке M. Так как ABCD — описанный четырёхугольник, Будем считать, что и Углы ABC и ADC прямые, так как AC — диаметр. По теореме Пифагора получаем и Отсюда следует, что то есть и Это значит, что треугольники ABC и ADC равны по третьему признаку равенства треугольников, поэтому Следовательно, CM — биссектриса треугольника DBC, а также его высота и медиана.
б) Пусть O — центр окружности, описанной около четырёхугольника ABCD. Тогда её радиус поэтому Допустим, что тогда и Рассматривая прямоугольные треугольники AMB и ABC, можем записать следовательно, Аналогично поэтому полупериметр четырёхугольника ABCD равен Площадь же четырёхугольника ABCD равна Искомый радиус вписанной окружности равен
Ответ: б)
Критерии оценивания выполнения задания | Баллы |
---|---|
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 |
Получен обоснованный ответ в пункте б) имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 |
Имеется верное доказательство утверждения пункта а) при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, Видео:2041 четырёхугольник ABCD вписан в окружность угол abd равен 38 угол cаd равен 54 Найдите угол ABCСкачать Четырехугольник abcd вписан в окружность причем диаметром окружности является его диагональ acЗадание 16. Четырёхугольник ABCD вписан в окружность, причём сторона CD — диаметр этой окружности. Продолжение перпендикуляра АН к диагонали BD пересекает сторону CD в точке а окружность — в точке F, причём Н — середина АЕ. а) Докажите, что четырёхугольник BCFE — параллелограмм. б) Найдите площадь четырёхугольника ABCD, если известно, что АВ = 5 и АН = 4. а) Точка В лежит на окружности с диаметром CD, поэтому , а т.к. , то ВС || AF. Трапеция ABCF вписана в окружность, значит, она равнобедренная, CF = АВ. Высота ВН. треугольника ABE является его медианой, значит, треугольник ABE равнобедренный, поэтому BE = АВ = CF, а т.к. , то CF || BE. Противоположные стороны BE и CF четырёхугольника BCFE равны и параллельны, значит, это параллелограмм.
б) Треугольник ADE равнобедренный, т.к. его высота DH является медианой, значит, , а т.к. вписанные углы DCF и DAF опираются на одну и ту же дугу, то . Следовательно, треугольник CEF равнобедренный, EF = CF = АВ = 5. Из прямоугольного треугольника АВН находим, что ВН = 3, значит, высота параллелограмма BCFE (даже ромба), опущенная из вершины Е на сторону ВС, равна 3. По теореме о произведении отрезков пересекающихся хорд , откуда Видео:Четырёхугольник ABCD вписан в окружность ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать Четырехугольник abcd вписан в окружность причем диаметром окружности является его диагональ acБАЗА ЗАДАНИЙ Задание № 16. Планиметрия с доказательством. 1. Прямая, проходящая через вершину B прямоугольника ABCD перпендикулярно диагонали AC, пересекает сторону AD в точке M, равноудалённой от вершин B и D. 2. К окружности, вписанной в квадрат ABCD, проведена касательная, пересекающая стороны AB и AD в точках M и N соответственно. 3. Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекаются в точке P, причём BC=CD. 4. В треугольнике ABC точки A 1 , B 1 , C 1 — середины сторон BC, AC и A B соответственно, AH— высота, ∠BAC = 60°, ∠BCA = 45°. 5. Две окружности касаются внутренним образом в точке A, причём меньшая проходит через центр большей. Хорда BC большей окружности касается меньшей в точке P. Хорды AB и AC пересекают меньшую окружность в точках K и M соответственно. 6. Две окружности касаются внутренним образом в точке A, причём меньшая окружность проходит через центр O большей. Диаметр BC большей окружности вторично пересекает меньшую окружность в точке M, отличной от A. Лучи AO и AM вторично пересекают большую окружность в точках P и Q соответственно. Точка C лежит на дуге AQ большей окружности, не содержащей точку P. 7. Две окружности касаются внутренним образом в точке K, причём меньшая проходит через центр большей. Хорда MN большей окружности касается меньшей в точке C. Хорды KM и KN пересекают меньшую окружность в точках A и B соответственно, а отрезки KC и AB пересекаются в точке L. 8. Дан прямоугольный треугольник ABC с прямым углом C. На катете AC взята точка M. Окружность с центром O и диаметром CM касается гипотенузы в точке N. 9. Точка B лежит на отрезке AC. Прямая, проходящая через точку A, касается окружности с диаметром BC в точке M и второй раз пересекает окружность с диаметром AB в точке K. Продолжение отрезка MB пересекает окружность с диаметром AB в точке D. 10. Точка M лежит на стороне BC выпуклого четырёхугольника ABCD, причём B и C — вершины равнобедренных треугольников с основаниями AM и DM соответственно, а прямые AM и MD перпендикулярны. 11. В равнобедренном тупоугольном треугольнике ABC на продолжение боковой стороны BC опущена высота AH. Из точки H на сторону AB и основание AC опущены перпендикуляры HK и HM соответственно. 12. Точка O — центр окружности, описанной около остроугольного треугольника ABC, I — центр вписанной в него окружности, H — точка пересечения высот. Известно, что ∠BAC = ∠OBC+∠OCB. 13. Точки P, Q, W делят стороны выпуклого четырёхугольника ABCD в отношении AP:PB = CQ:QB = CW:WD = 3:4, радиус окружности, описанной около треугольника PQW, равен 10, PQ = 16, QW = 12, угол PWQ— острый. 14. Окружность проходит через вершины В и С треугольника АВС и пересекает АВ и АС в точках C 1 , B 1 соответственно. 15. Дана трапеция ABCD с основаниями AD и BC. Диагональ BD разбивает её на два равнобедренных треугольника с основаниями AD и CD. 16. В прямоугольном треугольнике АВС с прямым углом С точки М и N – середины катетов АС и ВС соответственно, СН – высота. 17. В треугольнике АВС угол АВС равен 60°. Окружность, вписанная в треугольник, касается стороны AC в точке M. 18. В треугольнике АВС проведены высоты АК и СМ. На них из точек М и К опущены перпендикуляры МЕ и КН соответственно. 19. Окружность, вписанная в треугольник KLM, касается сторон KL, LM, MK в точках A, B и C соответственно. б) Найдите отношение LB:BM, если известно, что KC:CM = 3:2 и ∠ MKL = 60. 20. Дана равнобедренная трапеция ABCD с основаниями AD и BC. Окружность с центром O, построенная на боковой стороне AB как на диаметре, касается боковой стороны CD и второй раз пересекает большее основание AD в точке H, точка Q — середина CD. 21. Квадрат ABCD вписан в окружность. Хорда CE пересекает его диагональ BD в точке K. 22. В прямоугольном треугольнике ABC точки M и N – середины гипотенузы AB и катета BC соответственно. Биссектриса ∠ BAC пересекает прямую MN в точке L 23. Окружность касается стороны AC остроугольного треугольника ABC и делит каждую из сторон AB и BC на три равные части. 24. На катетах AC и BC прямоугольного треугольника ABC как на диаметрах построены окружности, второй раз пересекающиеся в точке M. Точка Q лежит на меньшей дуге MB окружности с диаметром BC. Прямая CQ второй раз пересекает окружность с диаметром AC в точке P. 25. Окружность, построенная на медиане BM равнобедренного треугольника ABC как на диаметре, второй раз пересекает основание BC в точке K. 26. В прямоугольной трапеции ABCD с прямым углом при вершине A расположены две окружности. Одна из них касается боковых сторон и большего основания AD, вторая – боковых сторон, меньшего основания BC и первой окружности. 27. В трапецию ABCD с основаниями AD и BC вписана окружность с центром O. 28. Дана трапеция с диагоналями равными 8 и 15. Сумма оснований равна 17. 🎦 ВидеоЧетырёхугольник ABCD со сторонами AB = 40 и CD = 10 вписан в окружность. Диагонали #огэ #математикаСкачать Урок 2. Описанная окружность около четырехугольника. Задача из ОГЭ| Подобные треугольникиСкачать Четырёхугольник ABCD вписан в окружность причём BC CD Известно что угол ADC равен 93Скачать Всё про углы в окружности. Геометрия | МатематикаСкачать Задание 16 (В1) ОГЭ по математике ▶ №11 (Минутка ОГЭ)Скачать Четырехугольники, вписанные в окружность. 9 класс.Скачать Задача первоклассника в 1 шаг! Невероятное решение!Скачать 3 правила для вписанного четырехугольника #shortsСкачать Задание 16 ЕГЭ по математике #7Скачать ОГЭ 2023. РАЗБОР ЗАДАНИЯ №16 "Окружность"Скачать Вписанный в окружность четырёхугольник.Скачать Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать ЕГЭ 2017 Четырехугольник и окружность (Планиметрия) Задание 16Скачать ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать Тренировочная работа №1 по МАТЕМАТИКЕ 11 класс 30 сентября 2020 года. Задание 16.Скачать Вписанные и описанные окружности. Вебинар | МатематикаСкачать Вписанный четырёхугольник | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис ТрушинСкачать 11 класс, 44 урок, Описанный четырехугольникСкачать |