Любой колебательный контур излучает энергию. Изменяющееся электрическое поле возбуждает в окружающем пространстве переменное магнитное поле, и наоборот. Математические уравнения, описывающие связь магнитного и электрического полей, были выведены Максвеллом и носят его имя. Запишем уравнения Максвелла в дифференциальной форме для случая, когда отсутствуют электрические заряды () и токи (j = 0):
Величины и — электрическая и магнитная постоянные, соответственно, которые связаны со скоростью света в вакууме соотношением
Постоянные и характеризуют электрические и магнитные свойства среды, которую мы будем считать однородной и изотропной.
В отсутствие зарядов и токов невозможно существование статических электрического и магнитного полей. Однако переменное электрическое поле возбуждает магнитное поле, и наоборот, переменное магнитное поле создает электрическое поле. Поэтому имеются решения уравнений Максвелла в вакууме, в отсутствие зарядов и токов, где электрические и магнитные поля оказываются неразрывно связанными друг с другом. В теории Максвелла впервые были объединены два фундаментальных взаимодействия, ранее считавшихся независимыми. Поэтому мы говорим теперь об электромагнитном поле.
Колебательный процесс в контуре сопровождается изменением окружающего его поля. Изменения, происходящие в окружающем пространстве, распространяются от точки к точке с определенной скоростью, то есть колебательный контур излучает в окружающее его пространство энергию электромагнитного поля.
Электромагнитная волна — это распространяющееся в пространстве электромагнитное поле, в котором напряженность электрического и индукция магнитного полей изменяются по периодическому закону.
При строго гармоническом изменении во времени векторов и электромагнитная волна называется монохроматической.
Получим из уравнений Максвелла волновые уравнения для векторов и .
Волновое уравнение для электромагнитных волн
Как уже отмечалось в предыдущей части курса, ротор (rot) и дивергенция (div) — это некоторые операции дифференцирования, производимые по определенным правилам над векторами. Ниже мы познакомимся с ними поближе.
Возьмем ротор от обеих частей уравнения
При этом воспользуемся доказываемой в курсе математики формулой:
где — введенный выше лапласиан. Первое слагаемое в правой части равно нулю в силу другого уравнения Максвелла:
Получаем в итоге:
Выразим rotB через электрическое поле с помощью уравнения Максвелла:
и используем это выражение в правой части (2.93). В результате приходим к уравнению:
и вводя показатель преломления среды
запишем уравнение для вектора напряженности электрического поля в виде:
Сравнивая с (2.69), убеждаемся, что мы получили волновое уравнение, где v — фазовая скорость света в среде:
Взяв ротор от обеих частей уравнения Максвелла
и действуя аналогичным образом, придем к волновому уравнению для магнитного поля:
Полученные волновые уравнения для и означают, что электромагнитное поле может существовать в виде электромагнитных волн, фазовая скорость которых равна
В отсутствие среды (при ) скорость электромагнитных волн совпадает со скоростью света в вакууме.
Основные свойства электромагнитных волн
Рассмотрим плоскую монохроматическую электромагнитную волну, распространяющуюся вдоль оси х:
Возможность существования таких решений следует из полученных волновых уравнений. Однако напряженности электрического и магнитного полей не являются независимыми друг от друга. Связь между ними можно установить, подставляя решения (2.99) в уравнения Максвелла. Дифференциальную операцию rot, применяемую к некоторому векторному полю А можно символически записать как детерминант:
Подставляя сюда выражения (2.99), зависящие только от координаты x, находим:
Дифференцирование плоских волн по времени дает:
Тогда из уравнений Максвелла следует:
Отсюда следует, во-первых, что электрическое и магнитное поля колеблются в фазе:
Далее, ни у , ни у нет компонент параллельных оси х:
Иными словами и в изотропной среде,
электромагнитные волны поперечны: колебания векторов электрического и магнитного полей происходят в плоскости, ортогональной направлению распространения волны.
Тогда можно выбрать координатные оси так, чтобы вектор был направлен вдоль оси у (рис. 2.27):
Рис. 2.27. Колебания электрического и магнитного полей в плоской электромагнитной волне
В этом случае уравнения (2.103) приобретают вид:
Отсюда следует, что вектор направлен вдоль оси z:
Иначе говоря, векторы электрического и магнитного поля ортогональны друг другу и оба — направлению распространения волны. С учетом этого факта уравнения (2.104) еще более упрощаются:
Отсюда вытекает обычная связь волнового вектора, частоты и скорости:
а также связь амплитуд колебаний полей:
Отметим, что связь (2.107) имеет место не только для максимальных значений (амплитуд) модулей векторов напряженности электрического и магнитного поля волны, но и для текущих — в любой момент времени.
Итак, из уравнений Максвелла следует, что электромагнитные волны распространяются в вакууме со скоростью света. В свое время этот вывод произвел огромное впечатление. Стало ясно, что не только электричество и магнетизм являются разными проявлениями одного и того же взаимодействия. Все световые явления, оптика, также стали предметом теории электромагнетизма. Различия в восприятии человеком электромагнитных волн связаны с их частотой или длиной волны.
Шкала электромагнитных волн представляет собой непрерывную последовательность частот (и длин волн) электромагнитного излучения. Теория электромагнитных волн Максвелла позволяет установить, что в природе существуют электромагнитные волны различных длин, образованные различными вибраторами (источниками). В зависимости от способов получения электромагнитных волн их разделяют на несколько диапазонов частот (или длин волн).
На рис. 2.28 представлена шкала электромагнитных волн.
Рис. 2.28. Шкала электромагнитных волн
Видно, что диапазоны волн различных типов перекрывают друг друга. Следовательно, волны таких длин можно получить различными способами. Принципиальных различий между ними нет, поскольку все они являются электромагнитными волнами, порожденными колеблющимися заряженными частицами.
Уравнения Максвелла приводят также к выводу о поперечности электромагнитных волн в вакууме (и в изотропной среде): векторы напряженности электрического и магнитного полей ортогональны друг другу и направлению распространения волны.
http://www.femto.com.ua/articles/part_1/0560.html – Волновое уравнение. Материал из Физической Энциклопедии.
http://elementy.ru/trefil/24 – Уравнения Максвелла. Материал из «Элементов».
http://telecomclub.org/?q=node/1750 – Уравнения Максвелла и их физический смысл.
http://principact.ru/content/view/188/115/ – Кратко об уравнениях максвелла для электромагнитного поля.
Эффект Доплера для электромагнитных волн
Пусть в некоторой инерциальной системе отсчета К распространяется плоская электромагнитная волна. Фаза волны имеет вид:
Наблюдатель в другой инерциальной системе отсчета К’, движущейся относительно первой со скоростью V вдоль оси x, также наблюдает эту волну, но пользуется другими координатами и временем: t’, r’. Связь между системами отсчета дается преобразованиями Лоренца:
Подставим эти выражения в выражение для фазы , чтобы получить фазу волны в движущейся системе отсчета:
Это выражение можно записать как
где и — циклическая частота и волновой вектор относительно движущейся системы отсчета. Сравнивая с (2.110), находим преобразования Лоренца для частоты и волнового вектора:
Для электромагнитной волны в вакууме
Пусть направление распространения волны составляет в первой системе отсчета угол с осью х:
Тогда выражение для частоты волны в движущейся системе отсчета принимает вид:
Это и есть формула Доплера для электромагнитных волн.
Если , то наблюдатель удаляется от источника излучения и воспринимаемая им частота волны уменьшается:
Если , то наблюдатель приближается к источнику и частота излучения для него увеличивается:
При скоростях V 2 (солнечная постоянная). Найдем среднюю амплитуду колебаний E0 вектора электрической напряженности в солнечном излучении. Вычислим амплитуды колебаний напряженности магнитного поля H0 и вектора магнитной индукции B0 в волне.
Ответ находим сразу из уравнений (3.127), где полагаем :
Электромагнитные волны поглощаются и отражаются телами, следовательно, они должны оказывать на тела давление. Рассмотрим плоскую электромагнитную волну, падающую нормально на плоскую проводящую поверхность. В этом случае электрическое поле волны возбуждает в теле ток, пропорциональный Е. Магнитное поле волны по закону Ампера будет действовать на ток с силой, направление которой совпадает с направлением распространения волны. В 1899 г. в исключительно тонких экспериментах П.И. Лебедев доказал существование светового давления. Можно показать, что волна, несущая энергию W, обладает и импульсом:
Пусть электромагнитная волна падает в вакууме по нормали на площадь А и полностью поглощается ею. Предположим, что за время площадка получила от волны энергию . Тогда переданный площадке импульс равен
На площадку действует со стороны волны сила
Давление Р, оказываемое волной, равно
Если средняя плотность энергии в волне равна , то на площадь А за время попадет энергия из объема и
Отсюда находим давление электромагнитной волны (света):
Если площадка идеально отражает всю падающую на нее энергию, то давление будет в два раза большим, что объясняется очень просто: одинаковый вклад в давление в этом случае дают как падающая, так и отраженная волны, в случае полностью поглощающей поверхности отраженной волны просто нет.
Пример 3. Найдем давление Р солнечного света на Землю. Используем значение солнечной постоянной из предыдущего примера. Искомое давление равно:
Пример 4. Найдем давление Р лазерного пучка на поглощающую мишень. Выходная мощность лазера N = 4.6 Вт, диаметр пучка d = 2.6 мм.
- Волновое число: физический смысл, размерность, формулы, примеры расчета
- Волновое число в спектроскопии
- Единица измерения волнового числа
- Разница между волновым числом и угловым волновым числом
- Пример расчета волнового числа
- Пример расчета углового волнового числа
- Преобразование длины волны в волновой число
- волновой вектор
- 💡 Видео
Видео:Волновое движение. Механические волны. 9 класс.Скачать
Волновое число: физический смысл, размерность, формулы, примеры расчета
Вы хотите знать, в чем разница между волновым числом и угловым волновым числом и как их рассчитать? Тогда эта статья как раз для вас. Мы подробно объясним эту тему и покажем на примере, как можно рассчитать эти величины.
Если вы рассматриваете электромагнитную волну с определенной длиной волны, то волновое число является обратным этой длине волны — оно ведет себя противоположным образом. Например, если длина волны увеличивается, волновое число уменьшается. Если, с другой стороны, длина волны уменьшается, то волновое число увеличивается.
Видео:Урок №45. Электромагнитные волны. Радиоволны.Скачать
Волновое число в спектроскопии
Волновое число k определяется в спектроскопии как обратная величина длины волны λ, то есть ξ = 1 / λ (называется еще пространственной частотой). Однако его также можно выразить через частоту f и скорость света в вакууме c, тогда ξ = f / c или также через число n длин волн, укладывающихся в определенную длину l, то есть ξ = n / l .
В целом, для волнового числа применимо следующее соотношение: ξ = 1 / λ = f / c = n / l .
Важно: Волновое число ξ не следует путать с частотой f. Частота имеет единицу измерения Гц = 1 / с = с -1 и определяется через обратную величину периода T: f = 1 / T . Она показывает, как часто электромагнитная волна колеблется в секунду.
Видео:Амплитуда, период, частота и длина волны периодических волнСкачать
Единица измерения волнового числа
Обычно волновое число выражается в в следующих единицах измерения (в СИ): 1 / м = м -1 , что соответствует числу колебаний на метр. Однако единица может быть также преобразована, например, в единицы 1 / см = см -1 или 1 / мм = мм -1 .
Между этими единицами измерения существует следующая взаимосвязь: 1 м -1 = 0,01 см -1 = 0,001 мм -1 , соответственно 1 мм -1 = 100 см -1 = 1000 м -1 .
Видео:Волновая функция (видео 5) | Квантовая физика | ФизикаСкачать
Разница между волновым числом и угловым волновым числом
Угловое волновое число часто ошибочно называют просто волновым числом. Однако, угловое волновое число k является величиной волнового вектора k и связано с волновым числом ξ следующим образом: k = | k | = 2*π*ξ = ω / c = 2*π / λ . В этой формуле где ω представляет собой так называемую угловую частоту. Волновой вектор — это вектор, перпендикулярный волновому фронту волны. Эта формула показывает, что волновое число ξ также может быть вычислено из углового волнового числа k: ξ = k / 2*π .
Важно: Угловую частоту и частоту также нельзя путать друг с другом. Угловая частота ω связана с частотой f следующим образом: ω = 2*π*f .
Физический смысл волнового числа.
Волновое число численно равно числу периодов волны, укладывающихся в отрезок 2π метров. Это пространственный аналог круговой частоты ω (рад·с -1 ). Характеристика периодического процесса в пространстве.
Видео:Механические модели волн. 1.Скачать
Пример расчета волнового числа
Если мы наблюдаем электромагнитную волну с длиной волны λ = 500 нм и хотим вычислить по ней волновое число ξ, то поступаем следующим образом. Чтобы получить размерность м -1 сначала переведите длину волны в метры. То есть 500 нм = 500 * 10 -9 м = 5*10 -7 м.
Используя представленную выше формулу, вы можете определить соответствующее волновое число: ξ = 1 / λ = 1 / 5*10 -7 = 2*10 6 м -1 .
На одном метре волна колеблется 2 миллиона раз. Если преобразовать единицу измерения, то можно сказать, что волна колеблется 2000 раз на одном миллиметре: 2 * 10 6 м -1 = 0,001 * 2 * 10 6 мм -1 = 2000 мм -1 .
Видео:Что Такое Свет-Волна Или ЧастицаСкачать
Пример расчета углового волнового числа
Если использовать ту же длину волны λ = 500 нм =5 *10 -7 м, как в предыдущем примере, и подставьте это значение в формулу для расчета углового волнового числа, то это приведет к следующим результатам: k = 2 * π / λ = 2 * π / 5 *10 -7 м = 1,2566 * 10 7 м -1 .
Легко видеть, что угловое волновое число k отличается от волнового числа ξ из предыдущего примера:
ξ = 2*10 6 м -1 ↔ k = 1,2566 * 10 7 м -1
Видео:МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебанийСкачать
Преобразование длины волны в волновой число
В следующей таблице показаны два направления преобразования из длины волны в волновое число и наоборот. Кроме того, в последней колонке перечислены некоторые области применения спектроскопии:
Видео:Урок 95 (осн). Механические волны. ЗвукСкачать
волновой вектор
ВОЛНОВОЙ ВЕКТОР — вектор k, определяющий направление распространения и пространственный период плоской монохроматич. волны
где — постоянные амплитуда и фаза волны, — круговая частота, r — радиус-вектор. Модуль В. в. наз. волновым числом k=, где — пространственный период или длина волны. В направлении В. в. происходит наибыстрейшее изменение фазы волны , поэтому оно и принимается за направление распространения. Скорость перемещения фазы в этом направлении, или фазовая скорость , определяется через волновое число . При классич. описании волновых процессов с В. в. связана плотность импульса , где — плотность энергии. В квантовом пределе соответственно импульс . Направление переноса энергии волной, вообще говоря, может и не совпадать с направлением В. в., как это имеет место, напр., в анизотропных средах или даже в изотропных средах с аномальной дисперсией, где возможен перенос энергии в направлении, противоположном В. в.
Понятие о В. в. может быть обобщено на случай квазигармонич. волн вида , если ввести локальный В. в. и мгновенную частоту . Однако, однозначная интерпретация этих величин допустима только при выполнении неравенств:
где k; — декартовы составляющие В. в. (i, j=1, 2, 3). Эти условия устанавливают применимость лучевого описания волновых процессов (приближения геометрической оптики и геометрической акустики, квазиклассич. приближения).
Для эл—магн. гармонической волны (в вакууме) В. в. k и величина (с — скорость света) объединяются в единый волновой четырёхвектор, компоненты к-рого подчиняются при переходе от одной инерциальной системы отсчёта к другой (движущейся с относит. скоростью u) Лоренца преобразованием:
Первое из этих соотношений определяет Доплера аффект, второе — эффект аберрации углов прихода волн (или формируемых ими лучей).
M. А. Миллер, Г. В. Пермитин.
💡 Видео
Спектр электромагнитных волн.Скачать
Электромагнитные волны НАГЛЯДНО. ТВ урок.Скачать
ФИЗИКИ не знают, что такое ЭЛЕКТРИЧЕСКИЙ ТОК. 7 крамольных фактов об ЭЛЕКТРИЧЕСТВЕСкачать
Билет №34 "Электромагнитные волны"Скачать
Можно ли ОСТАНОВИТЬ СВЕТ?Скачать
Что такое ИМПЕДАНС | РЕАКТИВНОЕ СОПРОТИВЛЕНИЕСкачать
Билет №36 "Волновод"Скачать
Пожалуй, главное заблуждение об электричестве [Veritasium]Скачать
Электромагнитные волны и электромагнитный спектр (видео 1) | Интерференция волн | ФизикаСкачать
Электромагнитные волныСкачать
Электромагнитная природа света. Скорость света. Интерференция света. 11 класс.Скачать
Урок 454. Понятие о волновой функцииСкачать