Прежде чем приступить к тематике статьи, напомним основные понятия.
Вектор – отрезок прямой, характеризующийся численным значением и направлением. Вектор обозначается строчной латинской буквой со стрелкой сверху. При наличии конкретных точек границ обозначение вектора выглядит как две прописные латинские буквы (маркирующие границы вектора) также со стрелкой сверху.
Нулевой вектор – любая точка плоскости, обозначается как нуль со стрелкой сверху.
Длина вектора – величина, равная или большая нуля, определяющая длину отрезка, составляющего вектор.
Коллинеарные векторы – лежащие на одной прямой или на параллельных прямых. Не выполняющие это условие векторы называют неколлинеарными.
- Сложение двух векторов
- Сложение нескольких векторов
- Умножение вектора на число
- Свойства операций над векторами
- Арифметическое n-мерное векторное пространство. Арифметические векторы и их обозначение. Линейно зависимые и линейно независимые системы векторов
- Страницы работы
- Содержание работы
- Глава 8 Арифметическое n-мерное векторное пространство.
- Векторы на ЕГЭ по математике. Действия над векторами
- Сложение векторов
- Вычитание векторов
- Умножение вектора на число
- Скалярное произведение векторов
- Онлайн-курс «Математика 10+11 100 баллов»
- 🎬 Видео
Видео:Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.Скачать
Сложение двух векторов
Исходные данные: векторы a → и b → . Для выполнения над ними операции сложения необходимо из произвольной точки отложить вектор A B → , равный вектору а → ; из полученной точки undefined – вектор В С → , равный вектору b → . Соединив точки undefined и C , получаем отрезок (вектор) А С → , который и будет являться суммой исходных данных. Иначе описанную схему сложения векторов называют правилом треугольника.
Геометрически сложение векторов выглядит так:
— для неколлинеарных векторов:
— для коллинеарных (сонаправленных или противоположнонаправленных) векторов:
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Сложение нескольких векторов
Взяв за основу описанную выше схему, мы получаем возможность произвести операцию сложения векторов в количестве более 2: поочередно прибавляя каждый последующий вектор.
Исходные данные: векторы a → , b → , c → , d → . Из произвольной точки А на плоскости необходимо отложить отрезок (вектор), равный вектору a → ; затем от конца полученного вектора откладывается вектор, равный вектору b → ; далее – по тому же принципу откладываются последующие векторы. Конечной точкой последнего отложенного вектора будет точка B , а полученный отрезок (вектор) A B → – суммой всех исходных данных. Описанную схему сложения нескольких векторов называют также правилом многоугольника .
Геометрически оно выглядит следующим образом:
Отдельной схемы действия по вычитанию векторов нет, т.к. по сути разность векторов a → и b → есть сумма векторов a → и — b → .
Видео:Высшая математика. Линейные пространства. Векторы. БазисСкачать
Умножение вектора на число
Чтобы произвести действие умножения вектора на некое число k , необходимо учитывать следующие правила:
— если k > 1 , то это число приведет к растяжению вектора в k раз;
— если 0 k 1 , то это число приведет к сжатию вектора в 1 k раз;
— если k 0 , то это число приведет к смене направления вектора при одновременном выполнении одного из первых двух правил;
— если k = 1 , то вектор остается прежним;
— если одно из множителей – нулевой вектор или число, равное нулю, результатом умножения будет нулевой вектор.
Исходные данные:
1) вектор a → и число k = 2 ;
2) вектор b → и число k = — 1 3 .
Геометрически результат умножения в соответствии с указанными выше правилами будет выглядеть следующим образом:
Видео:Аналитическая геометрия, 1 урок, Векторы в пространствеСкачать
Свойства операций над векторами
Описанным выше операциям над векторами присущи свойства, некоторые из которых очевидны, а прочие можно обосновать геометрически.
Исходные данные: векторы a → , b → , c → и произвольные действительные числа λ и μ .
- Свойство коммутативности: a ⇀ + b → = b → + a → .
- Свойство ассоциативности: ( a → + b → ) + c → = a → + ( b → + c → ) .
- Свойство использования нейтрального элемента по сложению (нулевой вектор 0 → ⃗). Это очевидное свойство: a → + 0 → = a →
- Свойство использования нейтрального элемента по умножению (число, равное единице): 1 · a → = a → . Это очевидное свойство, не предполагающее никаких геометрических преобразований.
- Любой ненулевой вектор a → имеет противоположный вектор — a → и верным является равенство: a → + ( — a → ) = 0 → . Указанное свойство — очевидное.
- Сочетательное свойство операции умножения: ( λ · µ ) · a → = λ · ( µ · a → ) . Например, растяжение вектора при умножении на число 10 можно произвести, сначала растянув вектор в 2 раза, а затем полученный результат еще в 5 раз. Также возможен вариант умножения на число 10 при сжатии вектора в 5 раз и последующего растяжения полученного результата в 50 раз.
- Первое распределительное свойство (очевидно): ( λ + µ ) · a → = λ · a → + µ · a → .
- Второе распределительное свойство: λ · ( a → + b → ) = λ · a → + λ · b → .
Геометрически это свойство определяется подобием треугольников:
Свойства коммутативности и ассоциативности дают возможность складывать векторы в произвольном порядке.
Перечисленные свойства операций позволяют осуществлять необходимые преобразования векторно-числовых выражений аналогично привычным числовым. Рассмотрим это на примере.
Задача: упростить выражение a → — 2 · ( b → + 3 · a → )
Решение
— используя второе распределительное свойство, получим: a → — 2 · ( b → + 3 · a → ) = a → — 2 · b → — 2 · ( 3 · a → )
— задействуем сочетательное свойство умножения, выражение приобретет следующий вид: a → — 2 · b → — 2 · ( 3 · a → ) = a → — 2 · b → — ( 2 · 3 ) · a → = a → — 2 · b → — 6 · a →
— используя свойство коммутативности, меняем местами слагаемые: a → — 2 · b → — 6 · a → = a → — 6 · a → — 2 · b →
— затем по первому распределительному свойству получаем: a → — 6 · a → — 2 · b → = ( 1 — 6 ) · a → — 2 · b → = — 5 · a → — 2 · b → Краткая запись решения будет выглядеть так: a → — 2 · ( b → + 3 · a → ) = a → — 2 · b → — 2 · 3 · a → = 5 · a → — 2 · b →
Ответ: a → — 2 · ( b → + 3 · a → ) = — 5 · a → — 2 · b →
Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
Арифметическое n-мерное векторное пространство. Арифметические векторы и их обозначение. Линейно зависимые и линейно независимые системы векторов
Страницы работы
Содержание работы
Глава 8 Арифметическое n-мерное векторное пространство.
Выше мы дали понятие вектора на плоскости и в пространстве.
На плоскости вектор определяется двумя координатами, то есть парой чисел. В пространстве вектор определяется уже тройкой чисел. Причём в этих случаях возможна была геометрическая интерпретация. Во многих задачах экономики приходится встречаться с величинами, которые определяются гораздо большим числом характеристик чем три. Поэтому обобщим понятие вектора на тот случай, когда число характеристик равно n.
Определение 1: Арифметическим n — мерным вектором называется любая последовательность из n действительных чисел:
Обозначать арифметический вектор будем как и обычный вектор чертой сверху, числа а1, а2, …, аn называются компонентами или координатами вектора.
Имеем арифметический вектор с координатами –1, 2, 3, 0, 1.
Многие определения, введённые для векторов, на плоскости и в пространстве фактически обозначаются на случай двух координат. Тем не менее, повторим их.
Определение 2: Дав вектора и с одинаковым числом координат:
равенство векторов записывают: .
Определение 3: Вектор, у которого все компоненты равны нулю, называется нулевым вектором (0,0,…0).
Обозначается: .
Определение 4: Суммой двух векторов и называется вектор
Определение 5: Произведением вектора на число называется вектор.
Операции сложения двух арифметических векторов и умножение арифметического вектора на число обладает следующими свойствами.
1. — коммутативность сложения.
2. — ассоциативность сложения.
3. — для любого .
4. Для любого вектора существует такой вектор , что +=0.
5. — дистрибутивность относительно суммы векторов.
6. — дистрибутивность относительно суммы чисел.
7. — ассоциативность относительно умножения на число.
8. — существование нейтрального элемента при умножении.
Приведённые свойства почти очевидны и являются следствиями свойств сложения и умножения чисел.
Определение 6: Арифметическим n – мерным пространством называется множество всех n – мерных арифметических векторов с введёнными выше операциями сложения векторов и умножения вектора на число. Обозначается R n .
Очень важным понятием для арифметических векторов является скалярное произведение, но для арифметических векторов оно определяется несколько иначе.
Определение 7: Скалярным произведением двух векторов и называется число .
Скалярное произведение обладает теми же свойствами, которые были введены для трёхмерных векторов.
Модуль арифметического n – мерного вектора определяется, так же как и в трёхмерном пространстве.
Аналогично вводится и понятие угла между двумя не нулевыми векторами.
Определение 8: Неравенство Коши-Буияковского. Для любых двух векторов и из пространства R n справедливо неравенство:
Определение 9: Два арифметических вектора и
называются ортогональными если их скалярное произведение равно нулю. или .
8.2 Линейно зависимые и линейно независимые системы векторов.
Прежде чем ввести понятие линейной зависимости векторов, дадим определение системы векторов.
Определение 1: Если мы имеем дело не с одним, а несколькими векторами, то есть набор векторов — называется системой векторов.
Определение 2: Пусть даны векторы из арифметического пространства R n . Любой вектор вида:
, где какие угодно числа называется линейной комбинацией векторов .
Определение 3: Система векторов из арифметического пространства R n называется линейно зависимой, если существуют такие числа не равные одновременно нулю, что справедливо равенство
Определение 4: Система векторов называется линейно независимой если равенство:
выполняется только в том случае, если все коэффициенты одновременно равны нулю .
Свойства линейной зависимости.
1. Система из одного вектора линейно зависима тогда и только тогда, когда это нулевой вектор.
2. Система, содержащая более одного вектора, линейно зависима тогда и только тогда, когда среди данных векторов имеется такой, который выражается линейно через остальные.
3. Если часть системы векторов линейно зависима, то и вся система векторов линейно зависима. Таким образом, система, содержащая нулевой вектор, линейно зависима.
4. Если система векторов линейно независима, но при добавлении к ней ещё одного вектора становится линейно зависимой, то вектор линейно выражается через векторы
Рассмотрим систему векторов.
числа стоящие на диагонали отличны от нуля. Такая система векторов называется лестничной, причём число векторов в лестничной системе не превосходит n.
Любая лестничная система векторов линейно независимая.
Определение 5: Векторы и из арифметического пространства R n называются коллинеарными если или , в координатной форме:
Видео:Геометрические векторы. Линейная алгебра. Лекция 1Скачать
Векторы на ЕГЭ по математике. Действия над векторами
Стандартное определение: «Вектор — это направленный отрезок». Обычно этим и ограничиваются знания выпускника о векторах. Кому нужны какие-то «направленные отрезки»?
А в самом деле, что такое векторы и зачем они?
Прогноз погоды. «Ветер северо-западный, скорость 18 метров в секунду». Согласитесь, имеет значение и направление ветра (откуда он дует), и модуль (то есть абсолютная величина) его скорости.
Величины, не имеющие направления, называются скалярными. Масса, работа, электрический заряд никуда не направлены. Они характеризуются лишь числовым значением — «сколько килограмм» или «сколько джоулей».
Физические величины, имеющие не только абсолютное значение, но и направление, называются векторными.
Скорость, сила, ускорение — векторы. Для них важно «сколько» и важно «куда». Например, ускорение свободного падения направлено к поверхности Земли, а величина его равна 9,8 м/с 2 . Импульс, напряженность электрического поля, индукция магнитного поля — тоже векторные величины.
Вы помните, что физические величины обозначают буквами, латинскими или греческими. Стрелочка над буквой показывает, что величина является векторной:
Вот другой пример.
Автомобиль движется из A в B . Конечный результат — его перемещение из точки A в точку B , то есть перемещение на вектор .
Теперь понятно, почему вектор — это направленный отрезок. Обратите внимание, конец вектора — там, где стрелочка. Длиной вектора называется длина этого отрезка. Обозначается: или
До сих пор мы работали со скалярными величинами, по правилам арифметики и элементарной алгебры. Векторы — новое понятие. Это другой класс математических объектов. Для них свои правила.
Когда-то мы и о числах ничего не знали. Знакомство с ними началось в младших классах. Оказалось, что числа можно сравнивать друг с другом, складывать, вычитать, умножать и делить. Мы узнали, что есть число единица и число ноль.
Теперь мы знакомимся с векторами.
Понятия «больше» и «меньше» для векторов не существует — ведь направления их могут быть разными. Сравнивать можно только длины векторов.
А вот понятие равенства для векторов есть.
Равными называются векторы, имеющие одинаковые длины и одинаковое направление. Это значит, что вектор можно перенести параллельно себе в любую точку плоскости.
Единичным называется вектор, длина которого равна 1 . Нулевым — вектор, длина которого равна нулю, то есть его начало совпадает с концом.
Удобнее всего работать с векторами в прямоугольной системе координат — той самой, в которой рисуем графики функций. Каждой точке в системе координат соответствуют два числа — ее координаты по x и y , абсцисса и ордината.
Вектор также задается двумя координатами:
Здесь в скобках записаны координаты вектора — по x и по y .
Находятся они просто: координата конца вектора минус координата его начала.
Если координаты вектора заданы, его длина находится по формуле
Видео:Понятие вектора. Коллинеарные вектора. 9 класс.Скачать
Сложение векторов
Для сложения векторов есть два способа.
1 . Правило параллелограмма. Чтобы сложить векторы и , помещаем начала обоих в одну точку. Достраиваем до параллелограмма и из той же точки проводим диагональ параллелограмма. Это и будет сумма векторов и .
Помните басню про лебедя, рака и щуку? Они очень старались, но так и не сдвинули воз с места. Ведь векторная сумма сил, приложенных ими к возу, была равна нулю.
2 . Второй способ сложения векторов — правило треугольника. Возьмем те же векторы и . К концу первого вектора пристроим начало второго. Теперь соединим начало первого и конец второго. Это и есть сумма векторов и .
По тому же правилу можно сложить и несколько векторов. Пристраиваем их один за другим, а затем соединяем начало первого с концом последнего.
Представьте, что вы идете из пункта А в пункт В , из В в С , из С в D , затем в Е и в F . Конечный результат этих действий — перемещение из А в F .
При сложении векторов и получаем:
Видео:Линейная алгебра. Векторы и операции над векторами.Скачать
Вычитание векторов
Вектор направлен противоположно вектору . Длины векторов и равны.
Теперь понятно, что такое вычитание векторов. Разность векторов и — это сумма вектора и вектора .
Видео:Линейная зависимость и линейная независимость векторов.Скачать
Умножение вектора на число
При умножении вектора на число k получается вектор, длина которого в k раз отличается от длины . Он сонаправлен с вектором , если k больше нуля, и направлен противоположно , если k меньше нуля.
Видео:Что такое вектора? | Сущность Линейной Алгебры, глава 1Скачать
Скалярное произведение векторов
Векторы можно умножать не только на числа, но и друг на друга.
Скалярным произведением векторов называется произведение длин векторов на косинус угла между ними.
Обратите внимание — перемножили два вектора, а получился скаляр, то есть число. Например, в физике механическая работа равна скалярному произведению двух векторов — силы и перемещения:
Если векторы перпендикулярны, их скалярное произведение равно нулю.
А вот так скалярное произведение выражается через координаты векторов и :
Из формулы для скалярного произведения можно найти угол между векторами:
Эта формула особенно удобна в стереометрии. Например, в задаче 14 Профильного ЕГЭ по математике нужно найти угол между скрещивающимися прямыми или между прямой и плоскостью. Часто векторным методом задача 14 решается в несколько раз быстрее, чем классическим.
В школьной программе по математике изучают только скалярное произведение векторов.
Оказывается, кроме скалярного, есть еще и векторное произведение, когда в результате умножения двух векторов получается вектор. Кто сдает ЕГЭ по физике, знает, что такое сила Лоренца и сила Ампера. В формулы для нахождения этих сил входят именно векторные произведения.
Векторы — полезнейший математический инструмент. В этом вы убедитесь на первом курсе.
Онлайн-курс «Математика 10+11 100 баллов»
— Теория: учебник Анны Малковой + 70 ч. видеоразборов.
— 144 ч. мастер-классов: 8 онлайн мастер-классов с Анной Малковой в месяц.
— Тренажер для отработки задач ЕГЭ (800+ задач): автоматическая + ручная проверки.
— Связь с Анной Малковой (чаты и почта).
— 9 репетиционных ЕГЭ: ежемесячно.
— Контроль: страница личных достижений учащегося, отчеты родителям.
— Личный кабинет.
🎬 Видео
Арифметическая прогрессия 9 класс. Формулы, о которых вы не знали | МатематикаСкачать
18+ Математика без Ху!ни. Векторное произведение.Скачать
Как разложить вектор по базису - bezbotvyСкачать
Коллинеарность векторовСкачать
ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэСкачать
Геометрия - 9 класс (Урок№1 - Понятие вектора. Равенство векторов)Скачать
✓ Что такое вектор? Чем отличается понятие "вектор" от понятия "направленный отрезок" | Борис ТрушинСкачать
Как за 10 минут понять СЛОЖНЕЙШУЮ ТЕМУ в Алгебре? Геометрическая прогрессияСкачать
Базис (завершение). Геометрические векторы (начало) | Лекция 4 | ЛинАл | СтримСкачать
§2 Линейная операция над векторамиСкачать