Алгоритмы маршрутизации вектор расстояние

Алгоритмы маршрутизации вектор расстояние

Протоколы маршрутизации RIP, OSPF, BGP

Алгоритмы маршрутизации: классификация, типы алгоритмов

Маршрутизация — процесс определения маршрута следования информации в сетях связи.

Алгоритмы маршрутизации применяются для определения оптимального пути пакетов от источника к получателю и являются основой любого протокола маршрутизации.

Типы алгоритмов
Алгоритмы маршрутизации могут быть классифицированы по типам:

  • Статические или динамические. Статические алгоритмы представляют свод правил работы со статическими таблицами маршрутизации, которые настраиваются администраторами сети. Хорошо работают в случае предсказуемого трафика в сетях стабильной конфигурации. Динамические алгоритмы маршрутизации подстраиваются к изменяющимся обстоятельствам сети в масштабе реального времени. Они выполняют это путем анализа поступающих сообщений об обновлении маршрутизации. Если в сообщении указывается, что имело место изменение сети, программы маршрутизации пересчитывают маршруты и рассылают новые сообщения о корректировке маршрутизации. Такие сообщения пронизывают сеть, стимулируя маршрутизаторы заново прогонять свои алгоритмы и соответствующим образом изменять таблицы маршрутизации. Динамические алгоритмы маршрутизации могут дополнять, где это уместно, статические маршруты.
  • Одномаршрутные или многомаршрутные алгоритмы. Некоторые сложные протоколы маршрутизации обеспечивают множество маршрутов к одному и тому же пункту назначения. Такие многомаршрутные алгоритмы делают возможной мультиплексную передачу трафика по многочисленным линиям, одномаршрутные алгоритмы не могут делать этого. Многомаршрутные алгоритмы могут обеспечить значительно большую пропускную способность и надежность.
  • Одноуровневые или иерархические алгоритмы. Отличаются по принципу взаимодействия друг с другом. В одноуровневой системе маршрутизации все рутеры равны по отношению друг к другу. В иерархической системе маршрутизации пакеты данных перемещаются от роутеров нижнего уровня к базовым, которые осуществляют основную маршрутизацию. Как только пакеты достигают общей области пункта назначения, ониперемежаются вниз по иерархии до хоста назначения.
  • Алгоритмы с маршрутизацией от источника. В системах маршрутизации от источника роутеры действуют просто как устройства хранения и пересылки пакета, без всякий раздумий отсылая его к следующей остановке, они предполагают, что отправитель рассчитывает и определяет весь маршрут сам. Другие алгоритмы предполагают, что хост отправителя ничего не знает о маршрутах. При использовании такого рода алгоритмов роутеры определяют маршрут через сеть, базируясь на своих собственных расчетах.
  • Внутридоменные или междоменные алгоритмы. Некоторые алгоритмы маршрутизации действуют только в пределах доменов; другие — как в пределах доменов, так и между ними.
  • Алгоритмы состояния канала и дистанционно-векторные. Алгоритмы состояния канала направляют потоки маршрутной информации во все узлы сети. Каждый роутер отсылает только ту часть известной ему информации, которая описывает состояние его собственных каналов, но всем узлам маршрутизации. Дистанционно-векторные требуют от каждого роутера пересылки всей или части его таблицы но только соседям.

Внутренний протокол маршрутизации RIP

Этот протокол маршрутизации предназначен для сравнительно небольших и относительно однородных сетей. Маршрут характеризуется вектором расстояния до места назначения. Предполагается, что каждый маршрутизатор является отправной точкой нескольких маршрутов до сетей, с которыми он связан. Описания этих маршрутов хранится в специальной таблице, называемой маршрутной. Таблица маршрутизации RIP содержит по записи на каждую обслуживаемую машину (на каждый маршрут). Запись должна включать в себя:

  • IP-адрес места назначения.
  • Метрика маршрута (от 1 до 15; число шагов до места назначения).
  • IP-адрес ближайшего маршрутизатора (gateway) по пути к месту назначения.
  • Таймеры маршрута.

Периодически (раз в 30 сек) каждый маршрутизатор посылает широковещательно копию своей маршрутной таблицы всем соседям-маршрутизаторам, с которыми связан непосредственно. Маршрутизатор-получатель просматривает таблицу. Если в таблице присутствует новый путь или сообщение о более коротком маршруте, или произошли изменения длин пути, эти изменения фиксируются получателем в своей маршрутной таблице. Протокол RIP должен быть способен обрабатывать три типа ошибок:

  1. Циклические маршруты.
  2. Для подавления нестабильностей RIP должен использовать малое значение максимально возможного числа шагов (не более 16).
  3. Медленное распространение маршрутной информации по сети создает проблемы при динамичном изменении маршрутной ситуации (система не поспевает за изменениями). Малое предельное значение метрики улучшает сходимость, но не устраняет проблему.

Несоответствие маршрутной таблицы реальной ситуации типично не только для RIP, но характерно для всех протоколов, базирующихся на векторе расстояния, где информационные сообщения актуализации несут в себе только пары кодов: адрес места назначение и расстояние до него.

Основное преимущество алгоритма вектора расстояний — его простота. Действительно, в процессе работы маршрутизатор общается только с соседями, периодически обмениваясь с ними копиями своих таблиц маршрутизации. Получив информацию о возможных маршрутах от всех соседних узлов, маршрутизатор выбирает путь с наименьшей стоимостью и вносит его в свою таблицу.

Маршрут по умолчанию имеет адрес 0.0.0.0 (это верно и для других протоколов маршрутизации). Каждому маршруту ставится в соответствие таймер тайм-аута и «сборщика мусора». Тайм-аут-таймер сбрасывается каждый раз, когда маршрут инициализируется или корректируется. Если со времени последней коррекции прошло 3 минуты или получено сообщение о том, что вектор расстояния равен 16, маршрут считается закрытым. Но запись о нем не стирается, пока не истечет время «уборки мусора» (2мин). При появлении эквивалентного маршрута переключения на него не происходит, таким образом, блокируется возможность осцилляции между двумя или более равноценными маршрутами.

Формат сообщения протокола RIP имеет вид:

Алгоритмы маршрутизации вектор расстояние

Поле команда определяет выбор согласно следующей таблице

Видео:41 МаршрутизацияСкачать

41 Маршрутизация

Урок 28. Дистанционно-векторные протоколы динамической маршрутизации. Принцип работы RIP

Мы уже знакомы со статической маршрутизацией, где необходимо маршруты создавать вручную. Однако такой способ маршрутизации неприемлем для больших сетей. На помощь приходят протоколы маршрутизации, которые позволяют вычислять оптимальный маршрут к каждой сети. Причем в случае изменении топологии сети протоколы оперативно реагируют на любые изменения в сети и просчитывают новые маршруты.

Существуют 2 типа протоколов маршрутизации.

IGP (Interior Gateway Protocol) — Протокол внутреннего шлюза.

EGP (Exterior Gateway Protocol) — Протокол внешнего шлюза.

IGP используются внутри автономных систем, а EGP — для связи автономных систем друг с другом.

Что такое автономная система?

Автономная система представляет собой сеть под единым доменом управления. Это может быть сеть одного провайдера или сеть большого предприятия

Алгоритмы маршрутизации вектор расстояние

В свою очередь протоколы IGP делятся на 2 класса: дистанционно-векторные и по состоянию канала (LSA — Link State Algorithm)

Протоколы по состоянию канала

Протокол IGRP является разработкой Cisco и сейчас практически не используется, поэтому рассматривать его не будем.

Краткая теория о векторном алгоритме маршрутизации

Принцип дистанционно-векторных протоколов основан на вычислении метрики — расстояния до сети назначения. Под расстоянием понимают количество узлов (участков сети), которые необходимо пройти пакету до сети назначения

Алгоритмы маршрутизации вектор расстояние

Максимальная метрика в протоколе RIP равна 15. Метрика со значением 16 означает, то сеть недостижима.

Почему нельзя метрику увеличить?

Это связано с зацикливанием маршрутов, которое происходит в случае изменения топологии сети. Об этом подробнее ниже.

Все маршрутизаторы, на которых запущен данный протокол, периодически рассылают соседям свою таблицу маршрутизации. RIP рассылает свою таблицу каждые 30с.

Приняв такую таблицу маршрутизатор обновляет записи в своей таблице, а затем формирует новую рассылку таблицы на основе полученной информации.

Вот как выглядит процесс рассылки в трейсе

Алгоритмы маршрутизации вектор расстояние

Векторный алгоритм не учитывает скорость и надежность канала. Механизм векторных протоколов позволяет балансировать нагрузку в случае, если до сети назначения будут найдены несколько маршрутов.

Проблемы векторных протоколов и способы их решения

Векторные протоколы не лишены недостатков:

  • Маршрутизаторы периодически рассылает всю таблицу своим соседям и тем самым загружают канал связи.
  • Медленная сходимость (convergence), то есть при изменении топологии сети (обрыв кабеля или выход из строя одного из маршрутизаторов) уходит много времени на оповещение всех маршрутизаторов и дальнейший расчет таблицы маршрутизации.
  • Нельзя использовать в больших сетях.
  • Не учитывается скорость канала при выборе наилучшего маршрута

Рассмотрим сеть ниже в нормальном состоянии

Алгоритмы маршрутизации вектор расстояние

Теперь разберем процесс, когда происходит обрыв в сети.

Произошел обрыв и сеть Е недоступна. Маршрутизатор C отмечает, что маршрут до сети Е недостижим метрикой 16.

Однако остальные маршрутизаторы пока ничего не знают

Алгоритмы маршрутизации вектор расстояние

Если обновления от соседних маршрутизаторов придут раньше, чем маршрутизатор C успеет отправить свои обновления, то данный маршрутизатор С обновит свою таблицу в соответствии с полученной информации. То есть в них будет указано, что сеть достижима с метрикой 1, так как у нее все еще есть запись о достижимости сети Е

Алгоритмы маршрутизации вектор расстояние

Маршрутизатор C увеличивает метрику на 1 и помещает запись в свою таблицу. Если сеть большая, то данный процесс может привести к зацикливанию недостижимого маршрута, когда при передаче обновлений от маршрутизатора к маршрутизатору метрика будет все больше и больше увеличиваться. Поэтому было принято установить максимальную метрику равную 15.

Получается маршрутизатор C должен успеть передать обновление, иначе это приведет к зацикливанию и неверным записям в таблицах?

Все верно. Период обновления равен 30 с и это очень много. Поэтому были разработаны технологии для увеличения сходимости и устойчивой работы протокола.

Triggered update (немедленные обновления) — как только маршрутизатор обнаруживает обрыв, то сразу высылает обновления своим соседям. Однако это может загрузить канал связи, особенно, если изменения в сети происходят очень часто.

Split Horizon (расщепление горизонта) — маршрутизатор никогда не отправит информацию о сети через порт, с которого получил данную информацию.

Например, маршрутизатор B получил от маршрутизатора C информацию, что сеть E достижима с метрикой 1. Когда маршрутизатор B начнет свою рассылку маршрутизатору C, то в ней не будет указано ничего о маршруте до сети E

Алгоритмы маршрутизации вектор расстояние

Poison reverse (опасный путь) — технология напоминает технологию Split Horizon, но с небольшим отличием. В технологии Split Horizon маршрутизатор не отправит обновление о сети обратно на тот интерфейс, через который получил обновление о данной сети. Poison reverse же наоборот отправляет это обновление о сети, о которой узнал через данный порт, однако помечает эту сеть недостижимой, то есть с метрикой 16.

Обе технологии решают одну и ту же задачу, но немного разными способами.

Таймеры векторных алгоритмов

Когда новый маршрут вычислен и помещен в таблицу маршрутизации, то запись о маршруте может находится в одном из ниже описанных состояний в зависимости от ситуации. Все значения будут указаны только для протокола RIP.

UP ( Update timer ) — маршрут в рабочем состоянии и присутствует в таблице маршрутизации. Каждые 30с маршрутизатор получает обновление о том, что маршрут достижимый. Частота обновления задается таймером Update timer.

Invalid (Holddown timer) — если по каким-то причинам маршрутизатор не получил обновление маршрута по истечении Update timer (30c), то маршрут помечается недостижимым, то есть с метрикой 16. Либо сосед уведомил, что маршрут недостижимый. Одновременно запускается Holddown timer равный 180с. Если в течении 180с маршрутизатор получит обновление маршрута с лучшей метрикой, то таймер обнуляется и маршрут помечается как достижимый.

Garbage collection (Flush timer) — если маршрутизатор в течении таймера Holddown не получил обновление, то по истечении таймера запускается Flush timer равный 240с. Если в течении данного времени будет получен маршрут с лучшей метрикой, то таймер обнуляется, а маршрут становится снова достижимым. В противном случае вся информация о маршруте удаляется из базы данных маршрутизатора.

Весь процесс проиллюстрирован ниже

Алгоритмы маршрутизации вектор расстояние

Зачем столько таймеров?

Это необходимо для предотвращения зацикливания маршрутов.

Видео:Алгоритмы теория и практика Методы - 122 урок. Расстояние редактированияСкачать

Алгоритмы теория и практика Методы - 122 урок.  Расстояние редактирования

Основы компьютерных сетей. Тема №9. Маршрутизация: статическая и динамическая на примере RIP, OSPF и EIGRP

Алгоритмы маршрутизации вектор расстояние

Всем привет! Спустя продолжительное время возвращаемся к циклу статей. Долгое время мы разбирали мир коммутации и узнали о нем много интересного. Теперь пришло время подняться чуть повыше и взглянуть на сторону маршрутизации. В данной статье поговорим о том, зачем нужна маршрутизация, разберем отличие статической от динамической маршрутизации, виды протоколов и их отличие. Тема очень интересная, поэтому приглашаю всех-всех к прочтению.

P.S. Возможно, со временем список дополнится.

В предыдущих статьях мы разбирали отличия сетевых устройств. А именно, чем коммутатор отличается от маршрутизатора (можно почитать здесь и здесь). То есть коммутатор в классическом понимании — это устройство, которое получает Ethernet-кадры на одном интерфейсе и передает эти кадры на другие интерфейсы, базируясь на заголовках и своей таблицы коммутации. Работает коммутатор канальном уровне.
Маршрутизаторы работают аналогично. Только оперируют IP-пакетами. И работают на сетевом уровне. Хочу заметить, что есть коммутаторы и маршрутизаторы, которые работают и на более высоких уровнях, но мы сейчас говорим о классических устройствах.
Встает вопрос. Почему мы не можем просто коммутировать весь трафик? И зачем требуются IP-адреса и маршрутизация. Ведь что MAC-адреса, что IP-адреса уникальны у каждого сетевого устройства (ПК, телефон, сервер и т.д.). Сейчас отвечу более развернуто.
Алгоритмы маршрутизации вектор расстояние
На рисунке представлены 2 коммутатора, к которым подключено по 250 пользователей. Соответственно, чтобы обеспечить связность между всеми участниками, коммутаторы должны знать MAC-адреса всех участников сети. То есть таблица каждого коммутатора будет содержать 500 записей. Это уже не мало.
А если представить, что таким образом будет работать Интернет, в котором миллиарды устройств? Следовательно нужно искать выход. Проблема коммутации заключается в том, что она плохо масштабируется. И тяжело соблюдать иерархию.
Теперь посмотрим на эту ситуацию с точки зрения маршрутизации.
Алгоритмы маршрутизации вектор расстояние
Здесь вводится понятие IP-адресации. Слева сеть 192.168.1.0/24 соединенная с левым маршрутизатором (R1), а справа сеть 192.168.2.0/24 соединенная с правым маршрутизатором (R2), соответственно. R1 знает, что добраться до сети 192.168.2.0 можно через соседа R2 и наоборот R2 знает, что добраться до сети 192.168.1.0 можно через соседа R1. Тем самым 500 записей в таблице коммутации заменяются одной в таблице маршрутизации. Во-первых это удобно, а во-вторых экономит ресурсы. Вдобавок к этому, можно соблюдать иерархичность, при построении.
Теперь поговорим о том, как таблица маршрутизации заполняется. Как только маршрутизатор включается «с коробки», он создает таблицу маршрутизации. Но самостоятельно он туда может записать только информацию о сетях, с которыми он связан напрямую (connected).
Покажу на примере в CPT:

Алгоритмы маршрутизации вектор расстояние

Добавляю маршрутизатор с пустой конфигурацией. Дожидаюсь загрузки и смотрю таблицу маршрутизации:

Сейчас таблица есть, но она пустая из-за того, что не подключен ни один из интерфейсов и не заданы IP-адреса. Соберем схему.
Алгоритмы маршрутизации вектор расстояние
Зададим IP-адресах на интерфейсах маршрутизатора:

И посмотрим, что изменилось в таблице маршрутизации:

В таблице появились 2 записи. Маршрутизатор автоматически добавил подсети, в которых находятся его интерфейсы. Сверху есть коды, показывающие каким образом маршрут был добавлен.
Настроим обе рабочие станции и проверим связность:
Алгоритмы маршрутизации вектор расстояние

Теперь детально рассмотрим, что происходит с пакетом, когда он попадает на маршрутизатор.
Алгоритмы маршрутизации вектор расстояние
Пакет приходит. Маршрутизатор сразу читает IP-адрес назначения в заголовке и сверяет его со своей таблицей.
Алгоритмы маршрутизации вектор расстояние
Находит совпадение, изменяет TTL и отправляет на нужный интерфейс. Соответственно, когда ответный пакет придет от PC1, он проделает аналогичную операцию.
То есть отличие в том, что маршрутизатор принимает решение исходя из своей таблицы маршрутизации, а коммутатор из таблицы коммутации. Единственное, что важно запомнить: и у коммутатора, и у маршрутизатора есть ARP-таблица. Несмотря на то, что маршрутизатор работает с 3 уровнем по модели OSI и читает заголовки IP-пакетов, он не может игнорировать работу стека и обязан работать на канальном и физическом уровне. В свою ARP-таблицу он записывает соотношения MAC-адреса к IP-адресу и с какого интерфейса к нему можно добраться. Причем ARP-таблица у каждого сетевого устройства своя. Пишу команду show arp на маршрутизаторе:

Как только PC0 отправил ICMP до PC1 и пакет дошел до маршрутизатора, он увидел в заголовках IP-пакета адрес отправителя (PC0) и его MAC-адрес. Он добавляет его в ARP-таблицу. Следующее, что он видит — это IP-адрес получателя. Он не знает, куда отправлять пакет, так как в его ARP-таблице нет записи. Но видит, что адрес получателя из той же сети, что и один из его интерфейсов. Тогда он запускает ARP с этого интерфейса, чтобы получить MAC-адрес запрашиваемого хоста. Как только приходит ответ, он заносит информацию в ARP-таблицу.
Это базовый пример того, как работает маршрутизация. Прикладываю ссылку на скачивание.
Усложним немного схему.
Алгоритмы маршрутизации вектор расстояние
На ней представлены 2 рабочие станции и 3 маршрутизатора. Не буду заострять внимание на том, как прописать IP-адрес на интерфейс, а лишь покажу итоговую конфигурацию:

Алгоритмы маршрутизации вектор расстояние

Алгоритмы маршрутизации вектор расстояние

Все устройства сконфигурированы. Теперь проверим связность между PC0 и PC1:
Алгоритмы маршрутизации вектор расстояние
В консоли PC0 вылезает сообщение о недоступности узла. Но ведь все адреса прописаны и добраться можно. В чем же проблема? Переходим в режим симуляции и копаем глубже:
Алгоритмы маршрутизации вектор расстояние
PC0 формирует ICMP-сообщение. Смотрит на IP-адрес назначения и понимает, что получатель находится в другой сети. Соответственно передать надо своему основному шлюзу, а дальше пускай сам разбирается.
Алгоритмы маршрутизации вектор расстояние
Пакет доходит до RT1. Смотрит в Destination IP и сравнивает со своей таблицей маршрутизации.

И вуаля. Совпадений нет. А значит RT1 понятия не имеет, что делать с этим пакетом.
Алгоритмы маршрутизации вектор расстояние
Но так просто отбросить его не может, так как надо уведомить того, кто это послал. Он формирует ответный ICMP с сообщением «Host Unreachable».
Алгоритмы маршрутизации вектор расстояние
Как только пакет доходит до PC0, в консоли высвечивается сообщение «Reply from 192.168.1.1: Destination host unreachable.». То есть RT1 (192.168.1.1) говорит о том, что запрашиваемый хост недоступен.
Выход из ситуации следующий: нужно «сказать» сетевому устройству, как добраться до конкретной подсети. Причем это можно сделать вручную или настроить все сетевые устройства так, чтобы они переговаривались между собой. Вот на этом этапе маршрутизация делится на 2 категории:

  • Статическая маршрутизация
  • Динамическая маршрутизация

Начнем со статической. В качестве примера возьмем схему выше и добьемся связности между PC0 и PC1. Так как первые проблемы с маршрутизацией начались у RT1, то перейдем к его настройке:

Маршрут прописывается командой ip route. Синтаксис прост: «подсеть» «маска» «адрес следующего устройства».
После можно набрать команду show ip route и посмотреть таблицу маршрутизации:

Появился статический маршрут (о чем свидетельствует код S слева). Здесь много различных параметров и о них я расскажу чуть позже. Сейчас задача прописать маршруты на всех устройствах. Перехожу к RT2:

Обратите внимание, что маршрут прописан не только в 192.168.2.0/24, но и 192.168.1.0/24. Без обратного маршрута полноценной связности не будет.
Остался RT3:

Маршруты на всех устройствах прописаны, а значит PC0 сможет достучаться до PC1 и наоборот PC1 до PC0. Проверим:
Алгоритмы маршрутизации вектор расстояние
Обратите внимание на то, что первые 3 запроса потерялись по тайм-ауту (не Unreachable). Это так CPT эмулирует работу ARP. По сути эти 3 потерянных пакета — это следствие того, что каждый маршрутизатор по пути запускал ARP-запрос до своего соседа. В итоге после всех работ PC0 успешно пингует PC1. Проверим обратную связь:
Алгоритмы маршрутизации вектор расстояние
И с этой стороны все прекрасно.
Ссылка на скачивание.

Теперь на примере таблицы R3 объясню, что она из себя представляет:

Коды (они же легенды) показывают, каким методом данный маршрут попал в таблицу. Их тут много и заострять внимание на все нет смысла (так как ныне не используются). Остановимся на двух — C(connected) и S(static).
Как только мы прописываем IP-адрес и активируем интерфейс, подсеть, к которой он принадлежит, автоматически попадает в таблицу маршрутизации. Поэтому справа от этой строки подписано directly connected и интерфейс, привязанный к этой подсети. Тоже самое с подсетью 192.168.2.0/24. А вот со статически заданным адресом чуть по другому. Подсеть 192.168.1.0/24 не напрямую подсоединена к текущему маршрутизатору, а доступна через 10.0.2.1. А вот этот next-hop уже принадлежит к 10.0.2.0/24 (которая напрямую доступна). Таким образом можно добраться до удаленной подсети, через знакомую сеть. Это может показаться немного запутанным, но именно так работает логика маршрутизатора. Тут еще можно заметить, что в строчке со статическим маршрутом присутствует запись [1/0]. Я чуть позже объясню что это, когда будет разбираться динамическая маршрутизация. Просто на фоне ее эти цифры сразу обретут смысл. А сейчас важно просто запомнить, что первое число — это административная дистанция, а второе — метрика.

Теперь перейдем к разделу динамической маршрутизации. Начну сразу с картинки:

Алгоритмы маршрутизации вектор расстояние

И сразу вопрос: В чем сложность этой схемы? На самом деле ни в чем, до того момента, пока не придется это все настраивать. Сейчас мы умеем настраивать статическую маршрутизацию. И за n-ое количество времени поднимем сеть и она будет работать. А теперь несколько но:

  • На одном из маршрутизаторов появилась новая подсеть. Это значит, что нужно на всех маршрутизаторах вручную прописать маршрут до нее.
  • Допустим мы из Router0 ходили до Cloud0 по цепочке 0 -> 1 -> 3 -> 2 -> Cloud0. Теперь внезапно сгорел/умер/украли Router3. Соответственно не было запасного пути и доступ до Cloud0 закрыт. Сеть стоит и компания не может работать. Тут придется подрываться и переписать цепочку по 0 -> 1 -> 4 -> 2 -> Cloud0. То есть нет никакого резерва. Если сеть падает, то без админа ничего не решить. Сеть не может сама перестроиться.
  • Ну и еще один аргумент, почему строить сеть исключительно на статических маршрутах — зло и не практично. Это, конечно, масштабируемость. Практически любая компания рано или поздно растет, расширяется и сетевых узлов становится все больше. А значит, в конечном итоге, сеть со статическими маршрутами начнет превращаться в ад для сетевого инженера.

Вот на помощь как раз приходит динамическая маршрутизация. Она оперирует двумя очень созвучными понятиями, но совершенно разными по смыслу:

  1. Routing protocols (протоколы маршрутизации) — это как раз те протоколы, о которых чуть ниже поговорим. При помощи этих протоколов, роутеры обмениваются маршрутной информацией и строят топологию.
  2. Routed protocols (маршрутизируемые протоколы) — это как раз те протоколы, которые мы маршрутизируем. В данном случае — это IPv4, IPv6.

Протоколы динамической маршрутизации делятся на 2 категории:

  • IGP (interior gateway protocols) — внутренние протоколы маршрутизации (RIP, OSPF, EIGRP). Гости этого выпуска.
  • EGP (external gateway protocols) — внешние протоколы маршрутизации (на сегодня BGP).

Отличий в них много, но самые главные — IGP запускается внутри одной автономной системы (считайте компании), а EGP запускается между автономными системами (то есть это маршрутизация в Интернете. При помощи него автономные системы связываются между собой). Сейчас представитель EGP остался один — это BGP. Я не буду долго на нем останавливаться, так как он выходит за рамки CCNA. Да и по нему лучше делать отдельную статью, чтобы не смешивать и так довольно емкий материал.

Теперь про IGP. Это прозвучит смешно, но и они делятся на несколько категорий:

  • Distance-Vector (дистанционно-векторные)
  • Hybrid or Advanced Distance Vector (гибридные или продвинутые дистанционно-векторные)
  • Link-State (протокол состояния канала)

Начну с дистанционно-векторного. Он, на мой взгляд, самый простой для понимания.
Название ему такое дали не с проста. Дистанция показывает расстояние до точки назначения. Дальностью оперирует такой показатель, как метрика (о чем я упоминал выше). Вектор показывает направление до точки назначения. Это может быть выходной интерфейс, IP-адрес соседа.
Мне этот протокол напоминает дорожный указатель. То есть по какому направлению идти и какое расстояние до точки назначения.
Теперь покажу на практике, как он работает и по ходу детально разберем.

Алгоритмы маршрутизации вектор расстояние

Чтобы не загромождать статью однообразными настройками, я заранее сконфигурировал устройства. А именно прописал IP-адреса и включил интерфейсы. Оставлю под спойлерами настройки:

Router0#show running-config
Building configuration.

Current configuration : 622 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router0
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.1.1.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.1.1 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
no ip address
duplex auto
speed auto
shutdown
!
interface Vlan1
no ip address
shutdown
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Router1#show running-config
Building configuration.

Current configuration : 622 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router1
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.2.2.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.1.2 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
no ip address
duplex auto
speed auto
shutdown
!
interface Vlan1
no ip address
shutdown
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Единственное, что может показаться новым — это Loopback интерфейсы. Он практически не отличается от других интерфейсов, за исключением того, что не представлен физически и к нему ничего нельзя воткнуть. Он программно создан внутри самого устройства. Такой интерфейс есть и на многих ОС, как Windows и Linux-подобных. На примере он используется для того, чтобы не рисовать множество маршрутизаторов со своими подсетями.
Сейчас таблицы маршрутизации выглядят следующим образом:

То есть у каждого в таблице маршрут общий с соседом (192.168.1.0/24) и недоступный другому соседу (10.1.1.0 и 10.2.2.0 соответственно).
Теперь для связности 2 маршрутизатора должны обменяться своими маршрутными информациями. И вот тут поможет протокол RIP.
Переключаю PT в режим симуляции и перехожу к настройкам:
Router0:

Сразу оговорюсь, что протокол RIP (также как EIGRP и OSPF) не анонсирует подсети таким образом. Он включает протокол на данном интерфейсе. То есть нельзя анонсировать то, что устройство не знает. И замечу, что включена вторая версия протокола и отключено автосуммирование. Изначально RIP был придуман для сетей с классовой адресацией. Поэтому суммирование он выполняет по тем же правилам, что не корректно в применении к бесклассовой. После перехода на бесклассовую адресацию, нужно было изменить работу протокола RIP. И вот во второй версии помимо подсети, передается еще и маска.
Алгоритмы маршрутизации вектор расстояние
На схеме сразу же оба маршрутизатора что-то сгенерировали:

Первый пакет:
Алгоритмы маршрутизации вектор расстояние
Это первый пакет, который генерирует роутер, при включении RIP. Тут важный аспект, что ничего не анонсируется и метрика = 16. (0x10 в шестнадцатиричном значение = 16 в десятичном).

Второй пакет:
Алгоритмы маршрутизации вектор расстояние
А вот этот пакет уже несет полезную информацию.

1) ADDR FAMILY: 0x2 — означает IP протокол. В большинстве случаев это поле не меняется.
2) NETWORK: 10.1.1.0 — подсеть, которая анонсируется.
3) SUBNET: 255.255.255.0 — маска
4) NEXT HOP: 192.168.1.1 — следующий узел для достижимости анонсированной подсети.
5) METRIC: 0x1 — стоимость пути (в данном случае 1).

С обратной стороны придет точно такой же анонс (только будет соответствующая подсеть, nexthop).

В итоге после получения анонсов, таблицы у обоих роутеров будут выглядеть следующим образом:

В таблице появилась пометка с кодом R. То есть получен по протоколу RIP.
Если пустить пинги:

Анонсируемые подсети достижимы. Еще важный аспект, при работе с протоколами маршрутизации — это просмотр сформированной базы. Таблица маршрутизации — это конечный итог, куда заносится маршрут. Посмотреть базу можно командой show ip rip database:

Эта команда полезна, когда маршруты никак не заносятся в таблицу, при этом вроде как RIP включен и настроено все верно. Если маршрута нет в базе, значит он никак не попадет в таблицу и тут надо копать глубже. У циски, к счастью, есть хороший инструмент для дебага, который позволяет практически моментально понять, что происходит. В CPT он урезан и многое не показать, но на реальных железках, он прекрасен.
Например:

Посмотрим, что происходит в RIP:

Сейчас все хорошо. Видно, что приходят/уходят апдейты и записи обновляются. Из за того, что дебажный инструмент обширен, лучше явно указывать что нужно ловить (как представлено выше). Иначе можно достаточно хорошо пригрузить устройство. Важно помнить про команду undebug all. Она отключает весь дебаг на устройстве.

Ссылка на скачивание лабы. Можете добавить еще один маршрутизатор к существующей схеме и связать их через RIP.

Теперь усложним схему и посмотрим в чем преимущество динамической маршрутизации.
Алгоритмы маршрутизации вектор расстояние
Добавился Router2, который соединен с ранее созданными маршрутизаторами и анонсирует подсеть 10.3.3.0/24.

Настраиваются аналогично предыдущему примеру. Поэтому покажу только конфигурации:

Router0#show running-config
Building configuration…

Current configuration: 736 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router0
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.1.1.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.1.1 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
ip address 192.168.3.1 255.255.255.0
duplex auto
speed auto
!
interface Vlan1
no ip address
shutdown
!
router rip
version 2
network 10.0.0.0
network 192.168.1.0
network 192.168.3.0
no auto-summary
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Router1#show running-config
Building configuration…

Current configuration: 736 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router1
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.2.2.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.1.2 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
ip address 192.168.4.1 255.255.255.0
duplex auto
speed auto
!
interface Vlan1
no ip address
shutdown
!
router rip
version 2
network 10.0.0.0
network 192.168.1.0
network 192.168.4.0
no auto-summary
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Router2#show running-config
Building configuration…

Current configuration: 736 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router2
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.3.3.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.3.2 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
ip address 192.168.4.2 255.255.255.0
duplex auto
speed auto
!
interface Vlan1
no ip address
shutdown
!
router rip
version 2
network 10.0.0.0
network 192.168.3.0
network 192.168.4.0
no auto-summary
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Итого на Router0 мы имеем следующую таблицу маршрутизации:

Из новых маршрутов — это 10.3.3.0/24, который доступен через 192.168.3.2 (т.е. Router2). И второй маршрут — это 192.168.4.0/24, который доступен через 192.168.1.2 (т.е. Router1) и 192.168.3.2 (т.е. Router2).
Вот в тех случаях, когда маршруты от разных устройств до одной подсети приходят с одинаковой метрикой, оба заносятся в таблицу. Такой случай называют балансировкой или ECMP (Equal-cost multi-path routing).
Если пройтись по нему через traceroute:

То есть меняется next-hop по очереди. Сама тема балансировки заслуживает отдельного внимания, т.к. у балансировки есть несколько стратегий по выбору оптимального пути. Случай, когда балансировка работает по очереди, как в нашем случае — называют Round-Robin.
Посмотрим базу RIP на Router0:

То есть нет никакого запасного маршрута, на случай выхода из строя 192.168.3.2. Теперь переключаю в режим симуляции и смотрю, что произойдет, если отключить на Router0 интерфейс fa0/1:

Алгоритмы маршрутизации вектор расстояние
Видим, что отключился линк на Router0 и Router2. И сразу оба устройства генерируют сообщения:
Router0:
Алгоритмы маршрутизации вектор расстояние

Router1:
Алгоритмы маршрутизации вектор расстояние

Сразу сообщают, что данные маршруты теперь недостижимы. Делают они это, при помощи метрики, которая становится равной 16. Исторически так сложилось, что протокол RIP был рассчитан на работу с 15 транзитными участками. В то время никто не подразумевал, что сеть может быть настолько большой:-). Называется этот механизм Poison Reverse.
Таким образом сосед, получивший такой апдейт должен удалить этот маршрут из таблицы.
Вот, что происходит на Router1:
Алгоритмы маршрутизации вектор расстояние
И самое интересное, что после этого Router1 отправит Router0 следующее:
Алгоритмы маршрутизации вектор расстояние
То есть я больше не знаю о 192.168.3.0/24.

На данный момент таблица на Router0 выглядит следующим образом:

То есть знает о своих подсетях и тех, что анонсировал Router1.
Двигаемся дальше:
Алгоритмы маршрутизации вектор расстояние
Видим, что Router1 генерирует пакет с кучей подсетей и отправляет соседям. В том числе там подсеть 10.4.4.0.
И в таблице Router0 теперь:

Замечу, что в таблице она записана с метрикой 2. Потому что данный маршрут направлен не напрямую от соседа, породившего его, а через транзитный маршрутизатор, который добавил 1.
Проверим доступность:

Пинги проходят, а через traceroute видим, что пакет сначала попадает на Router1, а дальше маршрутизируется на Router2.
То есть видно очевидное преимущество динамического протокола маршрутизации над статическими. При падении линка и наличии резервного пути, топология сама перестроилась. На сегодняшний день мало кто использует данный протокол. И на это есть множество причин. Одна из них — это количество транзитных маршрутов. Вдобавок ко всему — это время сходимости. По умолчанию все маршрутизаторы отправляют друг другу апдейты каждые 30 секунд. Если обновление не приходит в течении 180 секунд, маршрут помечается, как Invalid. А как время простоя доходит до 240 секунд, он удаляется. Конечно таймеры можно подкрутить. Но проблема еще в том, что в большой сети, при наличии проблемы где-нибудь по середине, апдейт с одного конца до другого может просто-напросто не дойти. Хотя он доступен. Есть еще одна проблема. RIP хранит только лучший маршрут. Поэтому когда отключился линк, маршрут пропал и резервного пути не было. А значит, пока никто из соседей не проанонсирует подсеть, она будет недоступной. Это очень ощутимо для сетей, в которых простой стоит дорого. В связи с этим были придуманы протоколы, у которых время сходимости выше и есть резервные пути. О них и поговорим. Хочу также отметить, что RIP — протокол не плохой (уж явно лучше, чем использование только статических маршрутов в растущей сети). Поэтому изучение лучше начать с него. Таким образом концепция динамической маршрутизации уляжется лучше. Да что тут говорить, если Cisco сначала убрала RIP из своих экзаменов, а теперь снова включила.

Теперь перейдем к EIGRP. Если RIP уже давно является открытым протоколом, то EIGRP был проприетарным и работал только на устройствах Cisco. Но в 2016 году Cisco решила все же открыть его, оставив авторство за собой. Ссылка на RFC7868.
Cisco называет его гибридным (имея в виду, что он взял что-то от Distance-Vector, а что-то от Link-State). В отличии от RIP он работает более «умно». В том плане, что у него есть резервные маршруты и он «хранит некую топологию сети» (хотя это верно очень частично).
Оперирует он 3-мя таблицами:

1) EIGRP Neighbor Table: Здесь представлены все напрямую соединенные соседи (то есть кто Next-Hop и с какого интерфейса к нему добраться).

2) EIGRP Topology Table: Здесь представлены все изученные маршруты от соседей (с точкой назначения и метрикой)

3) Global Routing Table: Общая для всех таблица и сюда попадают лучшие маршруты из предыдущей таблицы.

Соберем топологию и запустим на ней EIGRP. Попутно буду рассказывать, что происходит, чтобы совместить минимум теории с максимумом практики.
Топологию возьмем ту же, что и с RIP. На ней настроены все IP-адреса, подняты интерфейсы, но не запущен протокол маршрутизации.
Алгоритмы маршрутизации вектор расстояние

Router0#show running-config
Building configuration…

Current configuration: 635 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router0
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.1.1.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.1.1 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
ip address 192.168.3.1 255.255.255.0
duplex auto
speed auto
!
interface Vlan1
no ip address
shutdown
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Router1#show running-config
Building configuration…

Current configuration: 635 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router1
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.2.2.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.1.2 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
ip address 192.168.4.1 255.255.255.0
duplex auto
speed auto
!
interface Vlan1
no ip address
shutdown
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Router2#show running-config
Building configuration…

Current configuration: 635 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router2
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.3.3.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.3.2 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
ip address 192.168.4.2 255.255.255.0
duplex auto
speed auto
!
interface Vlan1
no ip address
shutdown
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Сейчас в маршрутных таблицах роутеров только Connected подсети.
Переходим в настройки EIGRP.

Как описал выше, при включении EIGRP, ему присваивается номер AS. И он должен совпадать на всех соседях. В настройках анонса сети теперь добавляется wildcard маска. Если не вдаваться в подробности — это обратная запись маски (т.е. 0.0.0.255 — это 255.255.255.0). И отключение автосуммирования (наследие классовых сетей).

В итоге видим следующую картину:
Алгоритмы маршрутизации вектор расстояние

Посмотрим, что сгенерировал Router0:
Алгоритмы маршрутизации вектор расстояние

Видим кучу полей и попробуем разобраться, что в них. Мы помним, что RIP был не самым надежным вариантом. Он не понимал какой номер пакета, не было механизма отслеживания, подтверждения и прочего. Да и плюс нижестоящий протокол был UDP, который тоже не имеет механизма надежности. EIGRP вообще работает сразу поверх IP (не используя механизмы транспортного уровня). Поэтому все механизмы по отслеживанию ложатся на его поля.
Из важного: появились флаги, SEQ. NUM (номер отправляемого пакета), ACK.NUM (подтверждение на принятый пакет), номер автономной системы (заданный при создании), и параметры K. Вот тут остановлюсь. В RIP метрика считалась тривиально. Пакет пришел, добавляю единицу и передаю дальше. В EIGRP метрика считается исходя из K значений:

1) K1 — bandwidth (или пропускная способность)
2) K2 — load (загруженность)
3) K3 — delay (задержка)
4) K4 — reliability (надежность)
5) K5 — MTU (Maximum Transmission Unit).

Но как правило, при расчете используются только K1 и K3.
Формула таким образом выглядит:
.
Запоминать ее наизусть не надо. Просто важно понимать, как происходит расчет метрики.
Вот, что происходит, когда пакет доходит до Router0:

К сожалению CPT наглухо тормозит от количества пакетов, поэтому покажу, что происходит в непосредственно таблицах Router0 (в остальных будет аналогично. Поэтому покажу на одном). А после подробно покажу процесс установления соседства в режиме дебага между двумя маршрутизаторами:

1) Neighbor Table:

Из важного. Здесь показан сосед, интерфейс (за которым он находится), hold (таймер, по истечении которого, произойдет разрыв соседства. При получении пакета от соседа, он повышается), uptime (как долго живет соседство), SRTT (время между отправкой и подтверждением), RTO (интервал между отправкой) и номер пакета.

2) Router0#show ip eigrp topology

Тут все просто. Если все хорошо с полученным маршрутом, то он становится Passive. О других полях и их значениях расскажу чуть позже. Сейчас достаточно того, что в данной таблице все хорошо. Из нового — вводится понятие Successor. Successor-ом выбирается тот, у кого наименьшая стоимость до конкретной подсети. Сейчас на каждый маршрут по одному Successor-у и только на маршрут 192.168.4.0 их два. Причем они оба выбраны Successor-ами из за одинаковой метрики (следовательно будет работать балансировка). Теперь обращу внимание на странные числа у каждого Successor-а.
EIGRP при расчете метрики оперирует 2-мя понятиями: Advertised Distance и Feasible Distance. Оба рассчитываются той страшной формулой:

1) Advertised Distance — это анонс стоимости от соседа. То есть сколько стоит от него (соседа) и до точки назначения.
2) Feasible Distance — это стоимость от самого роутера до точки назначения. То есть — это Adverticed Distance + стоимость линка до соседа.

Возьмем для примера запись от маршрута 10.2.2.0:

Число 128256 — это Advertised Distance, а 156160 — это Feasible Distance.
Соответственно, чем меньше Feasible Distance, тем выгоднее маршрут и такой сосед объявляется Successor-ом. После записи о количестве successors, всегда пишется какая FD была выбрана.
На текущий момент он работает приблизительно также, как и RIP. Только почему то метрика стала сложнее и добавилось больше таблиц. Но вот у EIGRP есть несколько фокусов в кармане. Один из них — это Feasible Successor (не путать с Feasible Distance). Это как раз тот самый резервный путь на случай отказа Successor. Сейчас у нас нет резервного пути (например до маршрута 10.2.2.0). Если падает 192.168.1.2, этот маршрут теряется до момента, пока о нем не расскажет другой сосед. Но мы прекрасно знаем, что о нем может рассказать Router2 (пусть и с худшей метрикой). Но EIGRP все же основан на неких правилах, что не позволяет ему так сделать. А правило заключается в следующем:
.
То есть стоимость анонсируемая от Feasible Successor (потенциально backup-роутера) должна быть меньше, чем Feasible Distance Successor (то есть полная стоимость через основного).
Звучит тяжело, но если проще. Взять тот же маршрут 10.2.2.0. Через него FD = 156160. Значит AD от Feasible Successor должна принять любое число меньшее 156160. Причем не важно сколько стоит линк от текущего роутера до соседа (хоть 1000000). Главное, чтобы backup-сосед анонсировал с меньшей метрикой, чем successor. Это правило используется для предотвращения петель.
Чтобы понять, как это работает, внесем изменения в топологию.
Сейчас на Router0 таблица топологии выглядит следующим образом:

Маршрут до 10.2.2.0/24 доступен через 192.168.1.2, что верно, так как Router1 его породил и так добраться быстрее всего. Поэтому Router2 не сможет проанонсировать лучше, так как его AD будет всегда выше.
Теперь переведем скорость интерфейсов между Router0 и Router1 на 10Мбит/с. Таким образом ухудшим канал, и внесем изменения в пересчет топологии.

Таким образом на Router0:

Видим, что до 10.2.2.0 теперь 2 пути, но Successor выбирается тот, у кого FD выгоднее. А выгоднее, через 192.168.3.2 (то есть Router2), так как у него скорость интерфейсов 100Мбит/с, хоть и преодолеть придется 2 хопа. А теперь обратим внимание, почему попали 2 записи в этот маршрут.

А потому что AD у 192.168.1.2 лучше, чем FD у 192.168.3.2 (128256 Router0

Router0#show running-config
Building configuration…

Current configuration: 622 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router0
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.1.1.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.1.1 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
no ip address
duplex auto
speed auto
shutdown
!
interface Vlan1
no ip address
shutdown
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Router1#show running-config
Building configuration…

Current configuration: 622 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router1
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.2.2.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.1.2 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
no ip address
duplex auto
speed auto
shutdown
!
interface Vlan1
no ip address
shutdown
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Теперь включаю OSPF для интерфейсов FastEthernet0/0 и Loopback1 обоих роутеров:

Конфигурация простая. Указывается подсеть, wildcard маска и номер зоны. После видим сообщения:

Соседство, судя по сообщению установилось. Но, если обратить внимание, то почему то соседство выбрано между адресами из Loopback интерфейсов. Это на самом деле не адрес, а идентификатор или Router ID. Если в самом процессе он явно не указывается, то выбирается автоматически. Если настроены Loopback интерфейсы, то выбирается наибольший IP-адрес из них. Если Loopback не настроены, то выбирается наибольший IP-адрес из обычного физического интерфейса. У нас Loopback был настроен, а значит он и будет выбран RID.
Так как процессы на обоих роутерах одинаковые, покажу на примере Router0:
Так как соседство установлено, посмотрим список соседей.

Видим 10.2.2.1 (Router1). Статус Full (чуть ниже расскажу и об этом), роль BDR (то есть Router0 выбран DR). Его физический IP-адрес и с какого интерфейса доступен.
Теперь посмотрим на базу данных OSPF:

Подробное ее содержание изучается в курсе CCNP Route, поэтому расскажу вкратце. Есть несколько типов LSA-сообщений. В нашей схеме используются только Type1 (Router) и Type2(Network). Первое генерится каждым маршрутизатором в пределах зоны и дальше зоны не уходит. Второй тип генерируется DR-ом и содержит адрес DR и инфу о всех маршрутизаторах в зоне.
Например, так выглядит Type1 с консоли Router0:

То есть LSA каждого маршрутизатора, в которых он сообщает о своих сетях.

А вот так Type2:

То есть как раз адрес DR (кому отправлять свои LSA и список маршрутизаторов в зоне).
И теперь можно посмотреть на таблицу маршрутизации:

Видим букву O (это значит, что маршрут получен из той же зоны, что и данный маршрутизатор). Можно заметить, что в таблицу записан с маской /32. Это потому что адрес из Loopback интерфейса и обычно такие адреса служат для всяких RID и прочих идентификаторов. Это не подсеть, а значит нет смысла анонсировать с тем же префиксом, что и сам интерфейс. Но такое поведение работает не на всех цисках. Поэтому тут надо быть внимательнее. Рядом видим привычную административную дистанцию (у циски это 110, но можно поменять) и метрику, которая равна 2-ум. Здесь метрика считается проще, чем у EIGRP. Формула:
.
Reference Bandwidth — это некое заданное число (здесь по-умолчанию 100). Оно прошито внутри логики и меняется командой auto-cost reference-bandwidth число в настройках OSPF процесса.
А вот Interface Bandwidth берется ровно такое, какая пропускная способность у интерфейса. На нашем интерфейсе это 100, поэтому метрика = 1. Так как Router1 анонсирует уже с метрикой 1, то накладывая свою стоимость в 1-цу, получаем 2.
OSPF для меня в свое время менялся в сложности понимания. Сначала казалось все легко, включил и все работает. Дальше, когда начинаешь углубляться в структуру LSA и как происходит формирование и расчет, теряешься. А после понимания, он снова становится легким. Его понимание приходит только после практики. Поэтому можете потренироваться на этой топологии. Ссылка на нее.
Пару слов по балансировке. Здесь она строго эквивалентная. Нельзя делать, как в EIGRP. Всего в кандидатах может быть до 16 маршрутов, но в таблицу попадут только 4.
Если предыдущая схема понятна, то двигаемся дальше. Добавим еще один маршрутизатор и соединим их, при помощи коммутатора:
Алгоритмы маршрутизации вектор расстояние
Я взял за основу предыдущую, адреса все те же самые, включен OSPF. На Router2 также включен OSPF и настроены адреса согласно схеме. Теперь смотрим, что произошло со стороны того же Router0. Ввожу команду просмотра соседей:

И вижу нового соседа, но с пометкой DROTHER. Это значит, что маршрутизатор Router2 (новый) не является DR или BDR. Обратите внимание, что DR (Router0) установил Full соседство со всеми соседями.
Ввожу нового игрока на поле — Router3:
Алгоритмы маршрутизации вектор расстояние
Единственное, что у него настроено — это IP-адрес 192.168.1.4/24 на FastEthernet 0/0 и включен OSPF. Он тут для наглядности.
Со стороны Router0:

Так как нет адреса на Loopback интерфейсе и не задан вручную RID, выбран адрес с физического интерфейса. А теперь переходим к Router2 и смотрим на его список соседей:

Видим, что с ним у него не Full отношения, а 2Way. Почему не Full? На этом остановлюсь и расскажу про процесс установления соседства. В хорошо работающей сети процесс соседства происходит настолько быстро, что все состояния вы не успеете увидеть. Я только опишу их, для общего понимания:
1) Down — это самый старт, когда маршрутизатор еще не предпринял попытку соседства и ничего в ответ не получает.
2) Init — маршрутизатор переходит в это состояние после отправки Hello-сообщения, до момента получения ответа.
3) 2-WAY — маршрутизатор переходит в это состояние, если получает ответный Hello и видит внутри него свой RID. Это как раз момент установления соседства. В сетях множественного доступа (типа Ethernet) это состояние конечное между «не DR/BDR» маршрутизаторами. Как раз в этом состоянии осталось соседство между Router2 и Router3.
4) ExStart — это состояние выбора DR/BDR. Маршрутизатор с наилучшим RID берет на себя эту роль. Он начинает первым процесс обновления LSDB у всех соседей.
5) Exсhange — состояние, в котором маршрутизаторы отправляют друг другу состояние своих LSDB.
6) Loading — если маршрутизатор видит, что в присланном сообщении есть подсеть, о которой он не знает, он запрашивает информацию о ней. И вот пока запрашиваемая инфа не дойдет до него, он будет висеть в этом состоянии.
7) Full — конечное состояние. Наступает оно в том случае, когда LSDB между соседями синхронизировано.
Стоит упомянуть, что в OSPF есть таймеры соседства. Нужно для того, чтобы узнать жив ли сосед или пора исключить его. Поэтому каждые 10 секунд маршрутизаторы отсылают друг другу Hello-пакеты, чтобы подтвердить свое существование. Если в течении 40 секунд от соседа ничего не поступало, соседство с ним разрывается.
Посмотреть на таймеры и другие параметры интерфейса, на котором включен OSPF, можно командой show ip ospf interface:

Если интересно, как происходит весь процесс установления соседства, откройте топологию по ссылке. Переключитесь в режим симуляции и перезагрузите один из маршрутизаторов. Все сразу особого смысла нет. Скорее быстрее заглючит CPT, нежели получиться разобраться.

И последнее, что стоит рассмотреть из раздела OSPF — это Multiarea OSPF (или многозонный OSPF).
Алгоритмы маршрутизации вектор расстояние
Теперь есть 3 маршрутизатора. Router0 находится в нулевой зоне, Router1 в 0-ой и 1-ой зоне и Router2 в 1-ой зоне. Конфигурация проста. Я оставлю ее под спойлерами:

Router0#show running-config
Building configuration…

Current configuration: 734 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router0
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.1.1.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.1.2 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
no ip address
duplex auto
speed auto
shutdown
!
interface Vlan1
no ip address
shutdown
!
router ospf 1
log-adjacency-changes
network 192.168.1.0 0.0.0.255 area 0
network 10.1.1.0 0.0.0.255 area 0
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Router1#show running-config
Building configuration…

Current configuration: 693 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router1
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface FastEthernet0/0
ip address 192.168.1.1 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
ip address 192.168.2.1 255.255.255.0
duplex auto
speed auto
!
interface Vlan1
no ip address
shutdown
!
router ospf 1
log-adjacency-changes
network 192.168.1.0 0.0.0.255 area 0
network 192.168.2.0 0.0.0.255 area 1
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Router2#show running-config
Building configuration…

Current configuration: 734 bytes
!
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
!
hostname Router2
!
!
!
!
!
!
!
!
ip cef
no ipv6 cef
!
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
!
!
!
!
!
!
interface Loopback1
ip address 10.2.2.1 255.255.255.0
!
interface FastEthernet0/0
ip address 192.168.2.2 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
no ip address
duplex auto
speed auto
shutdown
!
interface Vlan1
no ip address
shutdown
!
router ospf 1
log-adjacency-changes
network 192.168.2.0 0.0.0.255 area 1
network 10.2.2.0 0.0.0.255 area 1
!
ip classless
!
ip flow-export version 9
!
!
!
!
!
!
!
line con 0
!
line aux 0
!
line vty 0 4
login
!
!
!
end

Отличие от предыдущих схем только в том, что для Router1 и Router2 добавляется другой номер зоны, при включении.
Если посмотреть таблицу маршрутизации c Router0:

То добавились маршруты OIA (или OSPF inter area). То есть маршрут из другой зоны. Если посмотреть базу:

Здесь появился Summary LSA или Type3. Его генерирует маршрутизатор, который находится на границе двух зон. Такой маршрутизатор называют пограничным или ABR (от англ. Area Border Gateway).
Если посмотреть на него поглубже:

То можно заметить, что анонсирует его 192.168.2.1 (это RID Router1).
Если же посмотреть на таблицу маршрутизации со стороны ABR (т.е. Router1):

То для него все маршруты помечены O. Все потому что он находится в обеих зонах и для него они локальны.
А если посмотреть базу:

То тут их больше. Все потому, что у него представлены эти LSA на каждую зону, а также он генерирует Type3 в обе стороны. Для самостоятельного ознакомления лабу можно скачать по данной ссылке.

Таким образом OSPF можно делить на зоны. То есть маршрутизатор видит соседей в своей зоне и просчитывает лучший путь сам. А вот межзоннные маршруты (Type3) диктует ABR. Поэтому на границу чаще ставят производительные маршрутизаторы. На самом деле EIGRP и OSPF уж очень много всего умеют. И заслуживают отдельных статей. Более подробно они разбираются уже в топиках CCNP. Так что для основ достаточно.
В итоге мы разобрались с маршрутизацией и встает вопрос: что использовать? Однозначного ответа тут нет. Если у вас вся сеть построена на цисках, то можно выбирать EIGRP. Если у вас сеть мультивендорная, то тут однозначно OSPF. Да, циска вроде как открыла стандарт, но относительно старые железки (не циски) не получат поддержку этого протокола, да и не на всех новых его внедрят. Более того, могу сказать, что даже в сетях построенных исключительно на цисках, выбирают OSPF. Аргументируя это тем, что OSPF более гибок в настройке, нежели EIGRP. Да и нельзя быть уверенным, что в какой то момент придется ставить сетевое устройство другого вендора. А значит внедрение такого устройства пройдет безболезненно и без перенастройки всей сети.

Подводя итоги, можно сказать, что это самая долгая статья из всех, что я писал. Все потому, что писал я ее больше 2-х лет. Постоянно что-то стопорило ее написание, а когда садился, то не мог сконцентрироваться и написать больше 2-х предложений. Но теперь она написана и можно спокойно выдохнуть. Ее как раз не хватало для основ компьютерных сетей, ведь предыдущие статьи концентрировались в большинстве на L2 уровне. Столь длительное написание привело к тому, что циска уже меняет программу своего экзамена. А значит некоторые темы, которые я хотел далее осветить, уже не актуальны. Поэтому я уберу из содержания будущие темы и буду выкладывать статьи, исходя из актуальности.

Спасибо всем, кто ждал статью и интересовался.

💡 Видео

Протоколы маршрутизации | Компьютерные сети. Продвинутые темыСкачать

Протоколы маршрутизации  | Компьютерные сети. Продвинутые темы

Алгоритм Дейкстры или как навигатор определяет оптимальный маршрутСкачать

Алгоритм Дейкстры или как навигатор определяет оптимальный маршрут

Протокол IP: маршрутизация | Курс "Компьютерные сети"Скачать

Протокол IP: маршрутизация | Курс "Компьютерные сети"

07 Маршрутизация 02 Протоколы маршрутизацииСкачать

07 Маршрутизация 02 Протоколы маршрутизации

Курс "сетевой инженер". OSPF - протокол динамической маршрутизации.Скачать

Курс "сетевой инженер". OSPF - протокол динамической маршрутизации.

Алгоритм маршрутизацииСкачать

Алгоритм маршрутизации

Информатика. Вычисление расстояния Левенштейна. Центр онлайн-обучения «Фоксфорд»Скачать

Информатика. Вычисление расстояния Левенштейна. Центр онлайн-обучения «Фоксфорд»

Step 6 NS2 Tutorial (Network Simulator) Моделирование сети c протоколом динамической маршрутизацииСкачать

Step 6 NS2 Tutorial (Network Simulator) Моделирование сети c протоколом динамической маршрутизации

Протокол RIP | Компьютерные сети. Продвинутые темыСкачать

Протокол RIP | Компьютерные сети. Продвинутые темы

Статическая и динамическая маршрутизацияСкачать

Статическая и динамическая маршрутизация

Алгоритм построения маршрутовСкачать

Алгоритм построения маршрутов

Расстояние от точки до плоскости / Вывод формулыСкачать

Расстояние от точки до плоскости / Вывод формулы

Расстояние МахаланобисаСкачать

Расстояние Махаланобиса

МаршрутизацияСкачать

Маршрутизация

Тема 22. Обзор динамической маршрутизации. (RIP, EIGRP, OSPF)Скачать

Тема 22. Обзор динамической маршрутизации. (RIP, EIGRP, OSPF)

Протоколы маршрутизацииСкачать

Протоколы маршрутизации

Step 13 NS2 Tutorial (Network Simulator) Динамическая маршрутизация при передаче Multicast трафикаСкачать

Step 13 NS2 Tutorial (Network Simulator) Динамическая маршрутизация  при передаче Multicast трафика

Протокол OSPF | Компьютерные сети. Продвинутые темыСкачать

Протокол OSPF | Компьютерные сети. Продвинутые темы
Поделиться или сохранить к себе: