Запиши уравнение прямой параллельной данной y 10x 4

Уравнение параллельной прямой

Альтернативная формула:
Прямая, проходящая через точку M1(x1; y1) и параллельная прямой Ax+By+C=0 , представляется уравнением

назначение сервиса . Онлайн-калькулятор предназначен для составления уравнения параллельной прямой (см. также как составить уравнение перпендикулярной прямой).

Пример №2 . Написать уравнение прямой, параллельной прямой 2x + 5y = 0 и образующей вместе с осями координат треугольник, площадь которого равна 5.
Решение. Так как прямые параллельны, то уравнение искомой прямой 2x + 5y + C = 0. Площадь прямоугольного треугольника Запиши уравнение прямой параллельной данной y 10x 4, где a и b его катеты. Найдем точки пересечения искомой прямой с осями координат:
Запиши уравнение прямой параллельной данной y 10x 4 Запиши уравнение прямой параллельной данной y 10x 4 Запиши уравнение прямой параллельной данной y 10x 4Запиши уравнение прямой параллельной данной y 10x 4;
Запиши уравнение прямой параллельной данной y 10x 4Запиши уравнение прямой параллельной данной y 10x 4.
Итак, A(-C/2,0), B(0,-C/5). Подставим в формулу для площади: Запиши уравнение прямой параллельной данной y 10x 4. Получаем два решения: 2x + 5y + 10 = 0 и 2x + 5y – 10 = 0 .

Пример №3 . Составить уравнение прямой, проходящей через точку (-2; 5) и параллельной прямой 5x-7y-4=0 .
Решение. Данную прямую можно представить уравнением y = 5 /7x – 4 /7 (здесь a = 5 /7). Уравнение искомой прямой есть y – 5 = 5 / 7(x – (-2)), т.е. 7(y-5)=5(x+2) или 5x-7y+45=0 .

Пример №4 . Решив пример 3 (A=5, B=-7) по формуле (2), найдем 5(x+2)-7(y-5)=0.

Пример №5 . Составить уравнение прямой, проходящей через точку (-2;5) и параллельной прямой 7x+10=0.
Решение. Здесь A=7, B=0. Формула (2) дает 7(x+2)=0, т.е. x+2=0. Формула (1) неприменима, так как данное уравнение нельзя разрешить относительно y (данная прямая параллельна оси ординат).

Видео:Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

Как составить уравнение прямой, проходящей через две точки на плоскости | Математика

Задача 31118 Составить уравнение прямых, параллельных.

Условие

Запиши уравнение прямой параллельной данной y 10x 4

Составить уравнение прямых, параллельных прямой 3x-4y-10=0 и отстоящих от нее на расстояние d=3

Все решения

Запиши уравнение прямой параллельной данной y 10x 4

Множество прямых, параллельных прямой 3х -4у -10 =0
имеет вид:
3х — 4у +K=0

Пусть M(x_(o);y_(o)) принадлежит прямой 3х — 4у +K=0
Значит 3x_(o)-4*y_(o)+K=0

По формуле расстояния от точки M(x_(o);y_(o)) до прямой Ax+By+C=0
d=|A*x_(o)+B*y_(o)+C|/sqrt(A^2+B^2)

⇒ 3x_(o) — 4*y_(o) — 10 = 15 или 3x_(o) — 4*y_(o) -10 = — 15

3x_(o) — 4*y_(o) = 25 или 3x_(o) — 4*y_(o) = — 5

О т в е т. 3x — 4y + 25 = 0 или 3х — 4у — 5 = 0

Видео:Уравнение параллельной прямойСкачать

Уравнение параллельной прямой

Прямая линия. Уравнение прямой.

Свойства прямой в евклидовой геометрии.

Через любую точку можно провести бесконечно много прямых.

Через любые две несовпадающие точки можно провести единственную прямую.

Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или являются

параллельными (следует из предыдущего).

В трёхмерном пространстве существуют три варианта взаимного расположения двух прямых:

  • прямые пересекаются;
  • прямые параллельны;
  • прямые скрещиваются.

Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия

задается на плоскости уравнением первой степени (линейное уравнение).

Общее уравнение прямой.

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

уравнением прямой. В зависимости от значений постоянных А, В и С возможны следующие частные случаи:

C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат

А = 0, В ≠0, С ≠0 — прямая параллельна оси Ох

В = 0, А ≠0, С ≠ 0 – прямая параллельна оси Оу

В = С = 0, А ≠0 – прямая совпадает с осью Оу

А = С = 0, В ≠0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных

Уравнение прямой по точке и вектору нормали.

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В)

перпендикулярен прямой , заданной уравнением

Пример. Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

Решение. Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С

подставим в полученное выражение координаты заданной точки А. Получаем: 3 – 2 + C = 0, следовательно

С = -1. Итого: искомое уравнение: 3х – у – 1 = 0.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 ( x 1 , y 1 , z 1 ) и M2 ( x 2, y 2 , z 2 ), тогда уравнение прямой,

проходящей через эти точки:

Запиши уравнение прямой параллельной данной y 10x 4

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На

плоскости записанное выше уравнение прямой упрощается:

Запиши уравнение прямой параллельной данной y 10x 4

Дробь Запиши уравнение прямой параллельной данной y 10x 4= k называется угловым коэффициентом прямой.

Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Решение. Применяя записанную выше формулу, получаем:

Запиши уравнение прямой параллельной данной y 10x 4

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

Запиши уравнение прямой параллельной данной y 10x 4

и обозначить Запиши уравнение прямой параллельной данной y 10x 4, то полученное уравнение называется

уравнением прямой с угловым коэффициентом k.

Уравнение прямой по точке и направляющему вектору.

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание

прямой через точку и направляющий вектор прямой.

Определение. Каждый ненулевой вектор Запиши уравнение прямой параллельной данной y 10x 41, α2), компоненты которого удовлетворяют условию

Аα1 + Вα2 = 0 называется направляющим вектором прямой.

Пример. Найти уравнение прямой с направляющим вектором Запиши уравнение прямой параллельной данной y 10x 4(1, -1) и проходящей через точку А(1, 2).

Решение. Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением,

коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0.

при х = 1, у = 2 получаем С/ A = -3, т.е. искомое уравнение:

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на –С, получим:

Запиши уравнение прямой параллельной данной y 10x 4или Запиши уравнение прямой параллельной данной y 10x 4, где

Запиши уравнение прямой параллельной данной y 10x 4

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения

прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Пример. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках.

С = 1, Запиши уравнение прямой параллельной данной y 10x 4, а = -1, b = 1.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число Запиши уравнение прямой параллельной данной y 10x 4, которое называется

нормирующем множителем, то получим

xcosφ + ysinφ — p = 0 – нормальное уравнение прямой.

🔥 Видео

Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Записать уравнение прямой параллельной или перпендикулярной данной.

Составляем уравнение прямой по точкамСкачать

Составляем уравнение прямой по точкам

9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

12. Уравнения прямой в пространстве Решение задачСкачать

12. Уравнения прямой в пространстве Решение задач

ОГЭ по математике 2024 разбор 17 варианта Ященко и ФИПИ / ПДФ решение + формулы / МатТаймСкачать

ОГЭ по математике 2024 разбор 17 варианта Ященко и ФИПИ / ПДФ решение + формулы / МатТайм

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примеры

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

Уравнение прямой в пространстве через 2 точки. 11 класс.Скачать

Уравнение прямой в пространстве через 2 точки. 11 класс.

Написать канонические и параметрические уравнения прямой в пространствеСкачать

Написать канонические и параметрические уравнения прямой в пространстве

Уравнение прямой, проходящей через две точкиСкачать

Уравнение прямой, проходящей через две точки

Линейная функция. Составить уравнение прямой проходящей через точку и перпендикулярно прямой.Скачать

Линейная функция. Составить уравнение прямой проходящей через точку и перпендикулярно прямой.

Параметрические уравнения прямойСкачать

Параметрические уравнения прямой

Алгебра 7 класс. 26 октября. Составляем уравнение прямой проходящей через заданные точкиСкачать

Алгебра 7 класс. 26 октября. Составляем уравнение прямой проходящей через заданные точки

Уравнение прямой.Скачать

Уравнение прямой.

Видеоурок "Общие уравнения прямой"Скачать

Видеоурок "Общие уравнения прямой"
Поделиться или сохранить к себе: