Задание 25 окружности с центрами в точках

Задание 25 окружности с центрами в точках

Окружности с центрами в точках I и J пересекаются в точках A и B, причём точки I и J лежат по одну сторону от прямой AB. Докажите, что отрезки AB и IJ перпендикулярны.

Точка I равноудалена от A и B, поэтому она лежит на серединном перпендикуляре к отрезку AB. То же можно сказать и о J . Значит, IJ — серединный перпендикуляр к AB.

Критерии оценивания выполнения заданияБаллы
Доказательство верное, все шаги обоснованы.2
Доказательство в целом верное, но содержит неточности.1
Другие случаи, не соответствующие указанным критериям.0
Максимальный балл2

Задание 25 № 341422

Окружности с цен­тра­ми в точ­ках I и J пе­ре­се­ка­ют­ся в точ­ках A и B, причём точки I и J лежат по одну сто­ро­ну от пря­мой AB. Докажите, что от­рез­ки AB и IJ перпендикулярны.

Решение: IA и IB — радиусы окружности с центром в точке I => IA = IB => треугольник IAB — равнобедренный.

Проведем медиану IJ к стороне AB. Т.к. треугольник IAB — равнобедренный, то IJ также является высотой, проведённой AB => AB и IJ перпендикулярны, что и требовалось доказать.

Видео:ОГЭ по математике. Окружности с центрами в точках √25 вариант 2Скачать

ОГЭ по математике. Окружности с центрами в точках √25 вариант 2

Репетитор по математике

Меня зовут Виктор Андреевич, — я репетитор по математике . Последние десять лет я занимаюсь только преподаванием. Я не «натаскиваю» своих учеников. Моя цель — помочь ребенку понять предмет, научить его мыслить, а не применять шаблоны, передать свои знания, а не просто «добиться результата».

Предусмотрен дистанционный формат занятий (через Skype или Zoom). На первом же уроке оцениваем уровень подготовки ребенка. Если ребенка устраивает моя подача материала, то принимаем решение о дальнейшем сотрудничестве — составляем расписание и индивидуальный план работы. После каждого занятия дается домашнее задание — оно всегда обязательно для выполнения. [в личном кабинете родители могут контролировать успеваемость ребенка]

Задание 25 окружности с центрами в точках

Стоимость занятий

Набор на 2020/2021 учебный год открыт. Предусмотрен дистанционный формат.

Видеокурсы подготовки к ЕГЭ-2021

Решения авторские, то есть мои (автор ютуб-канала mrMathlesson — Виктор Осипов). На видео подробно разобраны все задания.

Теория представлена в виде лекционного курса, для понимания методик, которые используются при решении заданий.

Видео:ОГЭ по математике. Окружности с центрами.. Вариант 3 (25)Скачать

ОГЭ по математике. Окружности с центрами.. Вариант 3 (25)

Группа Вконтакте

В группу выкладываются самые свежие решения и разборы задач. Подпишитесь, чтобы быть в курсе и получать помощь от других участников.

Задание 25 окружности с центрами в точках

Видео:ОГЭ Задание 25 Две окружностиСкачать

ОГЭ Задание 25 Две окружности

Преимущества

Педагогический стаж

Сейчас существует много сайтов, где вам подберут репетитора по цене/опыту/возрасту, в зависимости от желаний. Но большинство анкет там принадлежат либо студентам, либо школьным учителям. Для них репетиторство — дополнительный временный заработок, из этого формируется отношение к деятельности. У студентов нет опыта и желания совершенствоваться, у школьных учителей — нет времени и сил после основной деятельности. Я занимаюсь только репетиторством с 2010 года. Все свои силы и знания трачу на совершенствование только в этой области.

Собственная методика

За время работы я накопил огромное количество материала для подготовки к итоговым экзаменам. Ребенку не будет даваться неадаптированная школьная программа. С каждым я разберу поэтапно специфичные примеры, темы, способы решений, необходимые для успешной сдачи ЕГЭ и ОГЭ. При этом это не будет «натаскиванием» на решение конкретных задач, но полноценная структурированная подготовка. Естественно, если таковые найдутся, устраню «пробелы» и в школьной программе.

Гарантированный результат

За время моей работы не было ни одного случая, где не прослеживалась бы четкая тенденция к улучшению знаний у ученика. Ни один откровенно не «завалил» экзамен. Каждый вырос в «понимании» математики в сравнении со своим первоначальным уровнем. Естественно, я не могу гарантировать, что двоечник за полгода подготовится на твердую «пять». Но могу с уверенностью сказать, что я подготовлю ребенка на его максимально возможный уровень за то время, что осталось до экзамена.

Индивидуальная работа

Все дети разные, поэтому способ и форма объяснения корректируются в зависимости от уровня понимания ребенком предмета. Индивидуальная работа с каждым учеником — каждому даются отдельные задания, теоретический материал.

Видео:Задача 25 ОГЭ Математика 1 ЯщенкоСкачать

Задача 25 ОГЭ Математика 1 Ященко

Задание №25 ОГЭ по математике

Решаем сложную геометрическую задачу.

Алгоритм решения:
  1. Делаем чертеж.
  2. Определяем равенство угла между касательной и хордой и угла АВС.
  3. Определяем соотношение отрезков из свойства биссектрисы угла треугольника и найдем АВ.
  4. Показываем, что треугольники DAC и DCB подобны.
  5. Составляем соотношения сторон подобных треугольников.
  6. Составляем систему равенств.
  7. Решаем систему.
  8. Записываем ответ.
Решение:

2. Рассматриваем АСD. В нем:

Согласно свойству углов окружности, касательной и секущей, угол, который образован этими линиями, равен половине градусной меры дуги, заключенной между сторонами этого угла. ∠DСА равен половине градусной меры дуги АС, заключенной между его сторонами СD и СА. Но вписанный ∠СВА опирается на ту же дугу АС и по свойству вписанного угла равен половине меры этой дуги. Следовательно, ∠ СВА=∠ АСD. 3. Согласно свойству биссектрисы угла треугольника, она делит АВ на отрезки АМ и МВ, пропорциональные сторонам АС и ВС. Таким образом,

Задание 25 окружности с центрами в точках

4. Рассмотрим DAC и DCB. У них:

∠ DCA = ∠ DBC по доказанному выше,

Следовательно, DAC DCB по двум углам.

5. Из определения и свойств подобных треугольников имеем:

Задание 25 окружности с центрами в точках

6. Составим систему равенств:

Задание 25 окружности с центрами в точках

7. Решим систему:

Задание 25 окружности с центрами в точкахОтвет: 10

pазбирался: Даниил Романович | обсудить разбор | оценить

Алгоритм решения:
  1. Сделаем чертеж.
  2. Определим равенство углов CDB и АВС.
  3. Определим соотношение отрезков, воспользовавшись свойством биссектрисы угла треугольника, и определим длину АВ.
  4. Покажем, что треугольники DAC и DCB подобны.
  5. Составим соотношения сторон подобных треугольников.
  6. Составим систему равенств.
  7. Решим систему.
  8. Запишем ответ.
Решение:

2. Рассмотрим АСD. В нем, согласно свойству углов окружности, касательной и секущей, угол, который образован этими линиями, равен половине градусной меры дуги, заключенной между сторонами этого угла. ⇒∠DСА равен половине градусной меры дуги АС, заключенной между его сторонами СD и СА. Но вписанный ∠СВА опирается на ту же дугу АС и по свойству вписанного угла равен половине меры этой дуги. Следовательно, ∠ СВА=∠ АСD. 3. Согласно свойству биссектрисы угла треугольника, согласно которому она делит АВ на отрезки АМ и МВ, пропорциональные сторонам АС и ВС. Таким образом,

Задание 25 окружности с центрами в точках

4. Рассмотрим DAC и DCB. У них:

∠ DCA = ∠ DBC по доказанному выше,

Значит, DAC DCB по двум углам.

5. Из определения и свойств подобных треугольников имеем:

Задание 25 окружности с центрами в точках

6. Составим систему равенств:

Задание 25 окружности с центрами в точках

7. Решим систему:

Задание 25 окружности с центрами в точках

Задание 25 окружности с центрами в точках

Задание 25 окружности с центрами в точках

Так как AD = DB-21, имеем:

Задание 25 окружности с центрами в точках

Таким образом, искомая длина CD=36.

pазбирался: Даниил Романович | обсудить разбор | оценить

Алгоритм решения:
  1. Сделаем чертеж.
  2. Установим подобие треугольников AFM и ANF.
  3. Определим сторону FM.
  4. Определим ∠FNA.
  5. Найдем .
  6. Составим теорему синусов и найдем радиус окружности.
  7. Запишем ответ.
Решение:

Задание 25 окружности с центрами в точках

1. Рассмотрим треугольники AFM и ANF. У них:

Угол A является общим, а

Задание 25 окружности с центрами в точкахпо доказанному выше.

Следовательно, треугольник AFM подобен треугольнику ANF по двум углам. Отсюда вытекает:

Задание 25 окружности с центрами в точках

3. В треугольнике AFM сторона AF=3, сторона AM=9. Воспользуемся теоремой косинусов для определения FM:

Задание 25 окружности с центрами в точкахПолученное значение означает, что AFM является равнобедренным. У него основание AF. 4. По свойству равнобедренного треугольника ∠FAM=∠AFM. Отсюда Задание 25 окружности с центрами в точках5. Найдем Задание 25 окружности с центрами в точкахЗначит, Задание 25 окружности с центрами в точках6. Из FMN по теореме синусов: Задание 25 окружности с центрами в точкахгде R – радиус описанной окружности. Отсюда получим значение радиуса окружности: Задание 25 окружности с центрами в точкахОтвет: 5,4

pазбирался: Даниил Романович | обсудить разбор | оценить

Пусть O — центр данной окружности, а Q — центр окружности, вписанной в треугольник ABC .

Точка касания M окружностей делит AC пополам по условию.

Лучи AQ и AO — биссектрисы смежных углов, так как касательные к окружностям равноудалены от центра. Так как AQ и AO — биссектрисы смежных углов, то угол OAQ прямой — смежные углы в сумме дают 180°, значит сумма их биссектрис:

Далее рассмотрим прямоугольный треугольник OAQ. По свойству высоты в прямоугольном треугольнике, получаем:

AM² = MQ•MO Отсюда:

pазбирался: Даниил Романович | обсудить разбор | оценить

Выполним чертеж окружности, описанной около треугольника АВС, покажем на нём все дополнительные элементы.

Задание 25 окружности с центрами в точках

При построении прямой АО образовалась точка пересечения этой прямой с окружностью, обозначим её буквой Е и соединим с точкой В и с точкой С. Получим вписанные углы АВЕ и АСЕ, опирающиеся на диаметр АЕ, следовательно угол АВЕ и АСЕ равны по 90 0 .

Рассмотрим треугольники АВЕ и АВF: у них углы АВЕ и АFВ прямые, угол ЕАВ – общий, следовательно, эти треугольники подобны.

Составим отношение сторон:

A E A B . . = A B A F . . откуда по свойству пропорции АВ 2 =АЕ ∙ АF

Рассмотрим треугольники АСЕ и ADF, у которых углы АСЕ и AFD прямые, а угол FAD – общий. Значит, треугольники АСЕ и ADF подобны.

Составим отношение сторон:

A E A D . . = A C A F . . ; откуда выразим AD= A E ∙ A F А C . . = A E ∙ A F A C . .

Теперь рассмотрим наши два полученных равенства: АВ 2 =АЕ ∙ АF и AD= A E ∙ A F A C . .

Видим, что 36 2 =АЕ ∙ АF (подставили вместо АВ значение 36), также у нас известно, что АС=54. Найдем из второго равенства AD= A E ∙ A F A C . . = 36 2 54 . . = 24

Теперь найдем CD=AC-AD=54-24=30

pазбирался: Даниил Романович | обсудить разбор | оценить

📹 Видео

Геометрия Окружности с центрами в точках O1 и O2 не имеют общих точек. Внутренняя общая касательнаяСкачать

Геометрия Окружности с центрами в точках O1 и O2 не имеют общих точек. Внутренняя общая касательная

Задание 25 (В1) ОГЭ по математике ▶ №20 (Минутка ОГЭ)Скачать

Задание 25 (В1) ОГЭ по математике ▶ №20 (Минутка ОГЭ)

Задача по темам: окружность, равнобедренный треугольник. "Окружности с центрами в точках Р и Q ..."Скачать

Задача по темам: окружность,  равнобедренный треугольник. "Окружности с центрами в точках Р и Q ..."

Задание 25 из Варианта Ларина №226 обычная версия ОГЭ-2020.Скачать

Задание 25 из Варианта Ларина №226 обычная версия ОГЭ-2020.

Шины ОГЭ 2023. Задания 1-5 ОГЭ по математикеСкачать

Шины ОГЭ 2023. Задания 1-5 ОГЭ по математике

Математика ОГЭ Задание 25 ОкружностьСкачать

Математика ОГЭ Задание 25 Окружность

Задание 25 ОкружностьСкачать

Задание 25  Окружность

Пример на котором все обосрались 25 задание ОГЭСкачать

Пример на котором все обосрались 25 задание ОГЭ

ОГЭ Задание 25 Условие принадлежности четырёх точек одной окружностиСкачать

ОГЭ Задание 25 Условие принадлежности четырёх точек одной окружности

Геометрия Окружности радиусов 25 и 100 касаются внешним образом. Точки A и B лежат на первой окружСкачать

Геометрия Окружности радиусов 25 и 100 касаются внешним образом. Точки A и B лежат на первой окруж

Как решить вторую часть на максимум? | Математика ОГЭ 2023 | УмскулСкачать

Как решить вторую часть на максимум? | Математика ОГЭ 2023 | Умскул

Все виды №25 из банка ФИПИ ОГЭ по математикеСкачать

Все виды №25 из банка ФИПИ ОГЭ по математике

Алгоритм решения задания №25 на максимум баллов с нуля | Обществознание ЕГЭ | УмскулСкачать

Алгоритм решения задания №25 на максимум баллов с нуля | Обществознание ЕГЭ | Умскул

Задание 25 из реального ОГЭ по математике 2023 | УмскулСкачать

Задание 25 из реального ОГЭ по математике 2023 | Умскул

Задача№25 ОГЭ Точка M и N лежат на стороне АС. Найдите радиус окружности, если cos ВАС ...Скачать

Задача№25 ОГЭ Точка M и  N лежат на стороне АС. Найдите радиус окружности, если cos ВАС ...

Задача 25 ОГЭ Математика 10 ЯщенкоСкачать

Задача 25 ОГЭ Математика 10 Ященко
Поделиться или сохранить к себе: