Задачи с хордой и окружностью огэ

Задания для подготовки к ОГЭ по теме «Касательная, хорда, секущая, радиус.»

Задачи с хордой и окружностью огэ

Материалы составлены из заданий Образовательного портала для подготовки к экзаменам СДАМ ГИА Дмитрия Гущина. В работе подобраны прототипы Задания№10 Окружность, круг и их элементы для подготовки к ОГЭ по математике 9 класс модуль»Геометрия» по теме «Касательная, хорда, секущая, радиус». Перед решением этих задач необходимо повторить понятия касательной, секущей, хорды и их свойств, понятия радиуса и диаметра. Повторить теорему Пифагора, свойства равнобедренного треугольника.

Просмотр содержимого документа
«Задания для подготовки к ОГЭ по теме «Касательная, хорда, секущая, радиус.»»

Задание №10. Касательная, хорда, секущая, радиус.

Задачи с хордой и окружностью огэ

К окруж­но­сти с цен­тром в точке О прове­де­ны касательная AB и секу­щая AO. Най­ди­те радиус окружности, если AB = 12 см, AO = 13 см.

К окруж­но­сти с цен­тром в точке О прове­де­ны касательная AB и секу­щая AO. Най­ди­те радиус окружности, если AB = 14 см, AO = 50 см.

Задачи с хордой и окружностью огэ

Ра­ди­ус OB окруж­но­сти с центром в точке O пе­ре­се­ка­ет хорду AC в точке D и перпенди­ку­ля­рен ей. Най­ди­те длину хорды AC, если BD = 1 см, а ради­ус окруж­ности равен 5 см.

Задачи с хордой и окружностью огэ

Ра­ди­ус OB окруж­но­сти с центром в точке O пе­ре­се­ка­ет хорду MN в её середи­не — точке K. Най­ди­те длину хорды MN, если KB = 1 см, а ра­ди­ус окруж­но­сти равен 13 см.

Задачи с хордой и окружностью огэ

Длина хорды окруж­но­сти равна 72, а расстояние от цен­тра окруж­но­сти до этой хорды равно 27. Най­ди­те диа­метр окружности.

Длина хорды окруж­но­сти равна 96, а расстояние от цен­тра окруж­но­сти до этой хорды равно 20. Най­ди­те диа­метр окруж­но­сти.

Задачи с хордой и окружностью огэ

Пря­мая ка­са­ет­ся окруж­но­сти в точке K. Точка O — центр окруж­но­сти. Хорда KM образует с касательной угол, рав­ный 83°. Най­ди­те величи­ну угла OMK. Ответ дайте в градусах.

Пря­мая ка­са­ет­ся окруж­но­сти в точке K. Точка O — центр окружности. Хорда KM образу­ет с ка­са­тель­ной угол, равный 60°. Найди­те ве­ли­чи­ну угла OMK. Ответ дайте в гра­ду­сах.

Пря­мая ка­са­ет­ся окруж­но­сти в точке K. Точка O — центр окруж­но­сти. Хорда KM образу­ет с ка­са­тель­ной угол, равный 79°. Най­ди­те ве­ли­чи­ну угла OMK. Ответ дайте в гра­ду­сах.

От­рез­ки AB и CD яв­ля­ют­ся хор­да­ми окружно­сти. Най­ди­те длину хорды CD, если AB = 20, а рас­сто­я­ния от цен­тра окружно­сти до хорд AB и CD равны соответ­ствен­но 24 и 10.

От­рез­ки AB и CD яв­ля­ют­ся хор­да­ми окружно­сти. Най­ди­те рас­сто­я­ние от цен­тра окруж­но­сти до хорды CD, если AB = 12, CD = 16, а рас­сто­я­ние от центра окруж­но­сти до хорды AB равно 8.

От­рез­ки AB и CD яв­ля­ют­ся хор­да­ми окружно­сти. Най­ди­те рас­сто­я­ние от цен­тра окруж­но­сти до хорды CD, если AB = 18, CD = 24, а рас­сто­я­ние от центра окруж­но­сти до хорды AB равно 12.

От­рез­ки AB и CD яв­ля­ют­ся хор­да­ми окружно­сти. Най­ди­те рас­сто­я­ние от цен­тра окруж­но­сти до хорды CD, если AB = 24 , CD = 32, а рас­сто­я­ние от цен­тра окружности до хорды AB равно 16.

Задачи с хордой и окружностью огэ

От­ре­зок AB = 40 ка­са­ет­ся окруж­но­сти радиу­са 75 с цен­тромO в точке B. Окружность пе­ре­се­ка­ет от­ре­зок AO в точке D. Най­дите AD.

От­ре­зок AB = 48 ка­са­ет­ся окруж­но­сти радиу­са 14 с цен­тромO в точке B. Окружность пе­ре­се­ка­ет от­ре­зок AO в точке D. Най­ди­те AD.

Задачи с хордой и окружностью огэ

На от­рез­ке AB вы­бра­на точка C так, что AC = 75 и BC = 10. По­стро­е­на окружность с цен­тром A, про­хо­дя­щая через C. Най­ди­те длину от­рез­ка касательной, про­ведённой из точки B к этой окруж­но­сти.

Задачи с хордой и окружностью огэ

Из точки А про­ве­де­ны две ка­са­тель­ные к окруж­но­сти с цен­тром в точке О. Най­ди­те ра­ди­ус окруж­но­сти, если угол между ка­са­тель­ны­ми равен 60°, а рас­сто­я­ние от точки А до точки О равно 8.

Из точки А про­ве­де­ны две ка­са­тель­ные к окруж­но­сти с цен­тром в точке О. Най­ди­те ра­ди­ус окруж­но­сти, если угол между ка­са­тель­ны­ми равен 60°, а рас­сто­я­ние от точки А до точки О равно 6.

Видео:ОГЭ 2023. РАЗБОР ЗАДАНИЯ №16 "Окружность"Скачать

ОГЭ 2023. РАЗБОР ЗАДАНИЯ №16 "Окружность"

Задачи с хордой и окружностью огэ

Радиус OB окружности с центром в точке O пересекает хорду AC в точке D и перпендикулярен ей. Найдите длину хорды AC, если BD = 1 см, а радиус окружности равен 5 см.

Найдем отрезок DO: DO = OB − BD = 5 − 1 = 4. Так как OB перпендикулярен AC, треугольник AOD — прямоугольный. По теореме Пифагора имеем: Задачи с хордой и окружностью огэ. Треугольник AOC — равнобедренный так как AO = OC = r, тогда AD = DC. Таким образом, AC = AD·2 = 6.

Найдите величину (в градусах) вписанного угла α, опирающегося на хорду AB, равную радиусу окружности.

Проведем радиусы OA и OB. Так как по условию задачи хорда AB равна радиусу, то треугольник AOB — равносторонний, следовательно, все его углы равны 60°. Угол AOB — центральный и равен 60° Угол ACB — вписанный и опирается на ту же дугу, что и угол AOB. Таким образом, Задачи с хордой и окружностью огэ

К окружности с центром в точке О проведены касательная AB и секущая AO. Найдите радиус окружности, если AB = 12 см, AO = 13 см.

Соединим отрезком точки O и B; полученный отрезок — радиус, проведённый в точку касания, поэтому OB перпендикулярен AB. Задача сводится к нахождению катета OB прямоугольного треугольника AOB. Из теоремы Пифагора:

Задачи с хордой и окружностью огэ

В треугольнике ABC угол C равен 90°, AC = 30 , BC = Задачи с хордой и окружностью огэНайдите радиус окружности, описанной около этого треугольника.

Вписанный прямой угол опирается на диаметр окружности, поэтому радиус окружности, описанной вокруг прямоугольного треугольника, равен половине гипотенузы. По теореме Пифагора имеем:

Задачи с хордой и окружностью огэ

Длина хорды окружности равна 72, а расстояние от центра окружности до этой хорды равно 27. Найдите диаметр окружности.

Проведём построение и введём обозначения, как показано на рисунке. Рассмотрим треугольники AOH и HOB, они прямоугольные, OH — общая, AO и OB равны как радиусы окружности, следовательно, эти треугольники равны, откуда Задачи с хордой и окружностью огэПо теореме Пифагора найдём радиус окружности:

Задачи с хордой и окружностью огэ

Диаметр равен двум радиусам, следовательно, Задачи с хордой и окружностью огэ

Видео:ОГЭ 23 КАК РЕШИТЬ ЗАДАЧУ НА ХОРДЫ В ОКРУЖНОСТИСкачать

ОГЭ 23 КАК РЕШИТЬ ЗАДАЧУ НА ХОРДЫ В ОКРУЖНОСТИ

Геометрия. Урок 5. Окружность

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Задачи с хордой и окружностью огэ

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение окружности
  • Отрезки в окружности

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Определение окружности

Окружность – геометрическое место точек, равноудаленных от данной точки.

Эта точка называется центром окружности .

Задачи с хордой и окружностью огэ

Видео:ищем хорду в окружности. огэ 1 часть геометрияСкачать

ищем хорду в окружности. огэ 1 часть геометрия

Отрезки в окружности

Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

Хорда a – отрезок, соединяющий две точки на окружности.

Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

O A – радиус, D E – хорда, B C – диаметр.

Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.

Видео:ОГЭ математика 10 минут на подготовку. Задание 16 касательная хорда секущаяСкачать

ОГЭ математика 10 минут на подготовку. Задание 16 касательная хорда секущая

Дуга в окружности

Часть окружности, заключенная между двумя точками, называется дугой окружности .

Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

Теорема 4:
Равные хорды стягивают равные дуги.

Если A B = C D , то ∪ A B = ∪ C D

Видео:ОГЭ 2022. Задание 16. Касательная, хорда, секущая. Основные теоремы для решения задач + много задачСкачать

ОГЭ 2022. Задание 16. Касательная, хорда, секущая. Основные теоремы для решения задач + много задач

Углы в окружности

В окружности существует два типа углов: центральные и вписанные.

Центральный угол – угол, вершина которого лежит в центре окружности.

∠ A O B – центральный.

Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α

Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

Градусная мара всей окружности равна 360 ° .

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

∠ A C B – вписанный.

Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .

∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Длина окружности, длина дуги

Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

Длина окружности находится по формуле:

Длина дуги окружности , на которую опирается центральный угол α равна:

l α = π R 180 ∘ ⋅ α

Видео:Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.

Площадь круга и его частей

Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

Круг – часть пространства, которая находится внутри окружности.

Иными словами, окружность – это граница, а круг – это то, что внутри.

Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

Площадь круга находится по формуле: S = π R 2

Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Примеры сектора в реальной жизни: кусок пиццы, веер.

Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

Видео:ОГЭ ЗАДАНИЕ 16 НАЙДИТЕ ДЛИНУ ХОРДЫ ОКРУЖНОСТИ ЕСЛИ РАДИУС 13 РАССТОЯНИЕ ДО ХОРДЫ 5Скачать

ОГЭ ЗАДАНИЕ 16 НАЙДИТЕ ДЛИНУ ХОРДЫ ОКРУЖНОСТИ ЕСЛИ РАДИУС 13 РАССТОЯНИЕ ДО ХОРДЫ 5

Теорема синусов

Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

Видео:Это Свойство Поможет Решить Задачи по Геометрии — Хорда, Окружность, Секущая (Геометрия)Скачать

Это Свойство Поможет Решить Задачи по Геометрии — Хорда, Окружность, Секущая (Геометрия)

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с окружностями.

💡 Видео

Длина хорды окружности равна 72 ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Длина хорды окружности равна 72 ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Свойства хорд, касательных, секущих окружности I Для решения задач из ОГЭ И ЕГЭ I Часть 1Скачать

Свойства хорд, касательных, секущих окружности I Для решения задач из ОГЭ И ЕГЭ I Часть 1

Углы в окружности. 16 задание ОГЭ математика 2023 | Молодой РепетиторСкачать

Углы в окружности. 16 задание ОГЭ математика 2023 | Молодой Репетитор

Хорда АВ стягивает дугу окружности в 40 градусов. Найдите угол АВС между этой хордой и касательной..Скачать

Хорда АВ стягивает дугу окружности в 40 градусов. Найдите угол АВС между этой хордой и касательной..

Решу ОГЭ по математике. 16 задание. Окружность, радиус ,касательная ,секущая, хордаСкачать

Решу ОГЭ по математике. 16 задание. Окружность, радиус ,касательная ,секущая, хорда

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)

Демо ОГЭ по математике. Задание 17. Хорда окружности.Скачать

Демо ОГЭ по математике. Задание 17. Хорда окружности.

Пересекающиеся хорды окружности. Решишь задачу?Скачать

Пересекающиеся хорды окружности. Решишь задачу?

Окружность, касательная, секущая и хорда | МатематикаСкачать

Окружность, касательная, секущая и хорда | Математика
Поделиться или сохранить к себе: