Задачи на углы при параллельных прямых пересеченных секущей

Углы при параллельных прямых и секущей. Вертикальные, смежные, односторонние, соответственные, накрест лежащие углы

Пусть прямая с пересекает параллельные прямые и . При этом образуется восемь углов. Углы при параллельных прямых и секущей так часто используются в задачах, что в геометрии им даны специальные названия.

Задачи на углы при параллельных прямых пересеченных секущей

Углы и — вертикальные. Очевидно, вертикальные углы равны, то есть

Конечно, углы и , и — тоже вертикальные.

Углы и — смежные, это мы уже знаем. Сумма смежных углов равна .

Углы и (а также и , и , и ) — накрест лежащие. Накрест лежащие углы равны.

Углы и — односторонние. Они лежат по одну сторону от всей «конструкции». Углы и — тоже односторонние. Сумма односторонних углов равна , то есть

Углы и (а также и , и , и ) называются соответственными.

Соответственные углы равны, то есть

Углы и (а также и , и , и ) называют накрест лежащими.

Накрест лежащие углы равны, то есть

Чтобы применять все эти факты в решении задач ЕГЭ, надо научиться видеть их на чертеже. Например, глядя на параллелограмм или трапецию, можно увидеть пару параллельных прямых и секущую, а также односторонние углы. Проведя диагональ параллелограмма, видим накрест лежащие углы. Это — один из шагов, из которых и состоит решение.

Ты нашел то, что искал? Поделись с друзьями!

1. Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении , считая от вершины тупого угла. Найдите большую сторону параллелограмма, если его периметр равен .

Задачи на углы при параллельных прямых пересеченных секущей Напомним, что биссектриса угла — это луч, выходящий из вершины угла и делящий угол пополам.

Пусть — биссектриса тупого угла . По условию, отрезки и равны и соответственно.

Рассмотрим углы и . Поскольку и параллельны, — секущая, углы и являются накрест лежащими. Мы знаем, что накрест лежащие углы равны. Значит, треугольник — равнобедренный, следовательно, .

Периметр параллелограмма — это сумма всех его сторон, то есть

2. Диагональ параллелограмма образует с двумя его сторонами углы и . Найдите больший угол параллелограмма. Ответ дайте в градусах.

Нарисуйте параллелограмм и его диагональ. Заметив на чертеже накрест лежащие углы и односторонние углы, вы легко получите ответ: .

3. Чему равен больший угол равнобедренной трапеции, если известно, что разность противолежащих углов равна ? Ответ дайте в градусах.

Задачи на углы при параллельных прямых пересеченных секущей Мы знаем, что равнобедренной (или равнобокой) называется трапеция, у которой боковые стороны равны. Следовательно, равны углы при верхнем основании, а также углы при нижнем основании.

Давайте посмотрим на чертеж. По условию, , то есть .

Углы и — односторонние при параллельных прямых и секущей, следовательно,

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Урок-практикум по геометрии в 7-м классе «Свойства углов, образованных при пересечении параллельных прямых секущей»

Разделы: Математика

Цели урока: (Слайд №1)
Образовательные: закрепление умений использовать знания признаков, свойств углов, образованных при пересечении параллельных прямых секущей, научить видеть различные способы при решении одной задачи.
Воспитательные: воспитание познавательной активности, чувства ответственности, культуры общения.
Развивающие: развитие логического мышления учащихся, внимания, активности, чувство ответственности, самостоятельности, культуры общения.
Тип урока: урок обобщения и систематизации знаний учащихся.
Организационные формы: парная, дифференцированно групповая.
Технология: уровневая дифференциация.
Структура урока:

  • вводное слово учителя
  • самостоятельная работа групп №2, №3
  • актуализация знаний учащихся группы №1
    1. диктант
    2. тест
  • самостоятельная работа группы №1
  • защита у доски работ группами №2, №3

К данному уроку прилагается презентация (Приложение 1)

Ход урока:
Вводное слово учителя
Многие великие люди всех времен и народов говорили о значении математики. Не только ученые — математики, но и поэты, писатели, философы. Высказывание одного великого мыслителя: «ни одно человеческое исследование не может называться истинной наукой, если оно не прошло через математические доказательства» Леонардо да Винчи (слайд №2).
Предметом исследования нашего урока будут углы, образованные при пересечении параллельных прямых секущей. Задачей нашего урока является обобщение и систематизация ваших знаний по данной теме.
В ходе групповой, парной, самопроверки вы еще раз закрепите знания свойств углов, образованных при пересечении параллельных прямых секущей (слайд №3).

Организация работы групп

  • класс делится на 3 группы по уровню их обученности
  • каждая группа получает определенные задания
  1. группа №3 — уровень «4-5». Решают по 3 задачи с последующей защитой у доски.
    Выполняют в тетрадях и сдают учителю.

    Задания для групп с уровнем обученности «4-5»

    Видео:7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать

    7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущей

    Геометрия. 7 класс

    Конспект урока

    Свойства параллельных прямых

    Перечень рассматриваемых вопросов:

    • Углы, образованные при пересечении двух прямых секущей.
    • Доказательство свойств параллельных прямых и их применение при решении задач.
    • Формулирование теоремы об углах с соответственно параллельными сторонами.

    Две прямые на плоскости называются параллельными, если они не пересекаются.

    Утверждение, обратное данной теореме– это утверждение, в котором условие является заключением теоремы, а заключение – условием теоремы.

    1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
    1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
    2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
    3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
    4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
    5. Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.

    Теоретический материал для самостоятельного изучения.

    Ранее мы узнали и научились применять признаки параллельности прямых.

    Рассмотрим утверждения, обратные к теоремам, выражающим признаки параллельности двух прямых.

    В любой теореме есть две части: условие (это то, что дано)и заключение (это то, что требуется доказать).

    Утверждением, обратным данному, называется утверждение, в котором условием является заключение, а заключением – условие.

    Итак, вспомним один из признаков параллельности прямых. Если при пересечении двух прямых секущей накрест лежащие углы, образованные этими прямыми и секущей, равны (это условие), то прямые параллельны (заключение).

    Задачи на углы при параллельных прямых пересеченных секущей

    Сформулируем и докажем обратное утверждение.

    Если две параллельные прямые пересечены секущей, то накрест лежащие углы,образованные этими прямыми и секущей,равны.

    ∠1 и ∠2 – накрест лежащие.

    Доказательство:( метод от противного):

    Задачи на углы при параллельных прямых пересеченных секущей

    Отложим ∠PMN =∠2 (накрест лежащие) → МР║b→ через точку М проходит 2 параллельные прямые прямой b (МР║b– доказательство;a║b– условие).→∠1=∠2.

    Это противоречит теореме о единственности прямой параллельной данной и проходящей через точку.

    Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой.

    Задачи на углы при параллельных прямых пересеченных секущей

    С пересекает а, значит, и пересекает параллельную ей прямую b(по следствию из аксиомы параллельных прямых).→ с – секущая к прямым а и b→∠1 = ∠2 = 90° (по только что доказанному свойству параллельных прямых).→ с ┴ b.

    Что и требовалось доказать.

    Вспомним ещё один признак параллельности двух прямых. Если при пересечении двух прямых секущей соответственные углы равны(это условие), то прямые параллельны(заключение).

    Задачи на углы при параллельных прямых пересеченных секущей

    Сформулируем и докажем обратное утверждение

    Если две параллельные прямые пересечены секущей, то соответственные углы, образованные этими прямыми и секущей, равны.

    Задачи на углы при параллельных прямых пересеченных секущей

    Дано:

    Доказать:

    По условию a║b→∠1 = ∠3 (накрест лежащие углы). → ∠2 = ∠3 (вертикальные углы).

    Значит, ∠1 = ∠2, что и требовалось доказать.

    Вспомним ещё один признак параллельности двух прямых. Если при пересечении двух прямых секущей сумма односторонних углов, образованных этими прямыми и секущей, равна 180° (условие), то прямые параллельны (заключение).

    Задачи на углы при параллельных прямых пересеченных секущей

    Сформулируем и докажем обратное утверждение.

    Если две параллельные прямые пересечены секущей, то сумма односторонних углов, образованных этими прямыми и секущей, равна 180°.

    Задачи на углы при параллельных прямых пересеченных секущей

    Дано:a║b,

    Доказать:

    По условию a║b→∠1=∠2 ‑соответственные углы, (в силу предыдущей теоремы).

    ∠2+∠4=180° (по свойству смежных углов).

    → ∠1+∠4= 180°,что и требовалось доказать.

    Материал для углубленного изучения темы.

    Задача на доказательство.

    Прямая m пересекает параллельные прямые а и b в точках А и В. Прямая р, проходящая через середину отрезка АВ, точку О, пересекает прямые а и b в точках С и D.

    Докажем, что ОС=ОD.

    По условию дано: а ║b, рՈа= А, рՈb = В, mՈа = D, mՈb = C.

    Доказать: ОС = ОD.

    Доказательство: рассмотрим, образовавшиеся при построении, треугольники AOD и BOC. Они равны по 2 признаку равенства треугольников, т.к. АО=ВО (О– середина отрезка АВ по условию); ∠1=∠2(накрест лежащие углы); ∠3=∠4 (вертикальные углы). →Все элементы равных треугольников соответственно равны → ОС=ОD. Что и требовалось доказать.

    Задачи на углы при параллельных прямых пересеченных секущей

    Разбор заданий тренировочного модуля.

    1. Три прямых а,р,с пересечены прямой k, при этом образуются соответственные углы: ∠1= 30°,∠2 = 40°,∠3= 30°,как показано на рисунке. Какие из прямых параллельны?

    Задачи на углы при параллельных прямых пересеченных секущей

    На рисунке изображены прямые а, р, с, которые пересечены секущей k. При этом углы 1,2,3 соответственные. По условию: ∠3= ∠1= 30°,∠2 ≠ ∠1,∠2 ≠ ∠3.

    Следовательно, прямые а и р параллельные, прямые а и с, р и с не параллельные(по свойствам параллельных прямых).

    2. На рисунке прямые аb, при этомMO и ЕО – биссектрисы углов М и Е соответственно, пересекаются в точке О. Чему равна градусная мера угла МОЕ, если сумма углов в треугольнике равна 180°?

    Задачи на углы при параллельных прямых пересеченных секущей

    По условию аb→∠М+∠Е=180° (по теореме о параллельных прямых об односторонних углах). Т.к. MO и ЕО – биссектрисы углов М и Е →∠М = 2∠ОМЕ,

    ∠М+∠Е =2∠ОМЕ +2∠МЕО =180°.

    По условию сумма углов в треугольнике равна 180° → в ∆МОЕ.

    🎦 Видео

    Параллельные прямые (задачи).Скачать

    Параллельные прямые (задачи).

    УГЛЫ ПРИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ И СЕКУЩЕЙСкачать

    УГЛЫ ПРИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ И СЕКУЩЕЙ

    Углы при параллельных прямых и секущей. ОГЭ/ЕГЭ (часть 1)Скачать

    Углы при параллельных прямых и секущей. ОГЭ/ЕГЭ (часть 1)

    Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

    Геометрия 7 класс (Урок№18 - Параллельные прямые.)

    №203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей сСкачать

    №203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей с

    №201. Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей равна 210Скачать

    №201. Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей равна 210

    Пары углов в геометрииСкачать

    Пары углов в геометрии

    Теоремы об углах, образованных двумя параллельными прямыми и секущей. Решение задач.Скачать

    Теоремы об углах, образованных двумя параллельными прямыми и секущей. Решение задач.

    ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углыСкачать

    ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углы

    Свойства углов, образованных двумя параллельными прямыми и секущей Задачи на признаки параллельностСкачать

    Свойства углов, образованных двумя параллельными прямыми и секущей  Задачи на признаки параллельност

    Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)Скачать

    Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)

    Углы при пересечении двух прямых секущей. Свойства и признаки параллельности прямых.Скачать

    Углы при пересечении двух прямых секущей. Свойства и признаки параллельности прямых.

    Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

    Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

    СООТВЕТСТВЕННЫЕ УГЛЫ, параллельные прямые линии, секущая .Скачать

    СООТВЕТСТВЕННЫЕ УГЛЫ, параллельные прямые линии, секущая .

    29. Теорема об углах, образованных двумя параллельными прямыми и секущейСкачать

    29. Теорема об углах, образованных двумя параллельными прямыми и секущей

    решение задач на параллельность прямыхСкачать

    решение задач на параллельность прямых

    Углы при пересечении двух прямых секущей (третьей прямой). Виды углов урок 5. Геометрия 7 класс.Скачать

    Углы при пересечении двух прямых секущей (третьей прямой). Виды углов урок 5. Геометрия 7 класс.

    Свойства параллельных прямых и секущей. 4 задачи.Скачать

    Свойства параллельных прямых и секущей. 4 задачи.
Поделиться или сохранить к себе: