Задачи на свойства равнобедренного треугольника

Задачи на свойства равнобедренного треугольника

Задачи на свойства равнобедренного треугольника

Равнобедренный треугольник — треугольнику которого две стороны равны.
Равные стороны называют боковыми сторонами, а третью сторону — основанием.

Свойства равнобедренного треугольника были известны с давних времен. Еще древние вавилоняне (II в. до н.э.) знали, что углы у основания равнобедренного треугольника равны. Любой треугольник можно разрезать на равнобедренные треугольники.

Свойства и признаки равнобедренного треугольника

Задачи на свойства равнобедренного треугольника

Свойства равнобедренного треугольника:
1. У равнобедренного треугольника углы у основания равны (теорема).
2. Медиана, биссектриса и высота, проведенные к основанию, совпадают (теорема).
3. Медианы равнобедренного треугольника, проведенные к боковым сторонам, равны.
4. Высоты равнобедренного треугольника, проведенные к боковым сторонам, равны.
5. Биссектрисы равнобедренного треугольника, проведенные к боковым сторонам, равны.

Признаки равнобедренного треугольника:
Если у треугольника есть один из нижеуказанных признаков, то он равнобедренный:
— два угла равны,
— высота и медиана совпадают,
— высота и биссектриса совпадают,
— медиана и биссектриса совпадают,
— две медианы равны,
— две высоты равны,
— две биссектрисы равны.

ПРИМЕРЫ РЕШЕНИЯ
КЛЮЧЕВЫХ ЗАДАЧ:

Задача № 1. Дано: ΔABC — равносторонний, ΔADC — равнобедренный (AD=CD), AC — общая сторона, BC = 8 см, PADC > PABC в 1,5 раза. Найти: CD.

Задачи на свойства равнобедренного треугольника

Задача № 2. Дано: ΔABC — равнобедренный, AB = BC, AD — медиана, AB + BD = 27 см, AC + CD = 21 см. Найти: AB, BC, AC.

Задачи на свойства равнобедренного треугольника

Задача № 3. Дано: ΔABC — равнобедренный, AB = BC, ∠1 = 130°. Найти: ∠2.

Задачи на свойства равнобедренного треугольника

Теоретический тест
с последующей самопроверкой

  1. Медиана в равнобедренном треугольнике является его биссектрисой и высотой. Это утверждение:
    а) всегда верно;
    б) может быть верно;
    в) всегда неверно.
  2. Если треугольник равносторонний, то:
    а) он равнобедренный;
    б) все его углы равны;
    в) любая его высота является биссектрисой и медианой.
  3. В каком треугольнике только одна его высота делит треугольник на два равных треугольника?
    а) в любом;
    б) в равнобедренном;
    в) в равностороннем.
  4. Биссектриса в равностороннем треугольнике является медианой и высотой. Это утверждение:
    а) всегда верно;
    б) может быть верно;
    в) всегда неверно.
  5. Если треугольник равнобедренный, то:
    а) он равносторонний;
    б) любая его медиана является биссектрисой и высотой;
    в) два его угла равны.
  6. В каком треугольнике любая его высота делит треугольник на два равных треугольника?
    а) в любом;
    б) в равнобедренном;
    в) в равностороннем.
  7. Если в треугольнике два угла равны, то этот треугольник является:
    а) равносторонним;
    б) равнобедренным;
    в) прямоугольным.
  8. Если в треугольнике две стороны равны, то:
    а) у него равны два угла;
    б) у него все углы равны;
    в) этот треугольник равносторонний.
  1. Медиана в равнобедренном треугольнике является его биссектрисой и высотой. Это утверждение: б) может быть верно.
  2. Если треугольник равносторонний, то: а) он равнобедренный; б) все его углы равны; в) любая его высота является биссектрисой и медианой.
  3. В каком треугольнике только одна его высота делит треугольник на два равных треугольника? б) в равнобедренном.
  4. Биссектриса в равностороннем треугольнике является медианой и высотой. Это утверждение: а) всегда верно.
  5. Если треугольник равнобедренный, то: в) два его угла равны.
  6. В каком треугольнике любая его высота делит треугольник на два равных треугольника? в) в равностороннем.
  7. Если в треугольнике два угла равны, то этот треугольник является: б) равнобедренным.
  8. Если в треугольнике две стороны равны, то: а) у него равны два угла.

Вы смотрели конспект по теме «Равнобедренный треугольник + ЗАДАЧИ по теме». Выберите дальнейшие действия:

Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Свойства равнобедренного треугольника: теория и задача

В данной публикации мы рассмотрим определение и свойства равнобедренного треугольника. Также разберем пример решения задачи для закрепления теоретического материала.

Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Определение равнобедренного треугольника

Равнобедренным называют треугольник, в котором две стороны имеют одинаковую длину (называются боковыми). Оставшаяся третья сторона является основанием фигуры.

Задачи на свойства равнобедренного треугольника

Видео:Свойства равнобедренного треугольника. 7 класс.Скачать

Свойства равнобедренного треугольника. 7 класс.

Свойства равнобедренного треугольника

Свойство 1

В равнобедренном треугольнике углы при основании (т.е. между боковыми сторонами и основанием) равны. Это значит, что α = β.

Задачи на свойства равнобедренного треугольника

Если углы при основании треугольника равны, значит он является равнобедренным.

Свойство 2

В равнобедренном треугольнике высота, опущенная на основание, одновременно является и биссектрисой угла и медианой, проведенной к основанию.

Задачи на свойства равнобедренного треугольника

BD – медиана и высота к основанию AC, а также биссектриса угла ABC.

Свойство 3

Центры вписанной и описанной вокруг равнобедренного треугольника окружностей лежат на одном отрезке, являющимся биссектрисой, медианой и высотой, проведенной к основанию.

Задачи на свойства равнобедренного треугольника

  • O1 и O2 – расположены на одном отрезке;
  • R – радиус описанной окружности;
  • r – радиус вписанной окружности.

Видео:Свойства равнобедренного треугольника. Практическая часть. 7 класс.Скачать

Свойства равнобедренного треугольника. Практическая часть. 7 класс.

Пример задачи

Дан равнобедренный треугольник, в котором длина основания в полтора раза больше боковой стороны. Периметр фигуры равняется 14 см. Найдите длины всех сторон.

Решение
Нарисуем чертеж согласно условиям задачи, приняв боковую сторону за a.

Задачи на свойства равнобедренного треугольника

В таком случае, основание AC равняется 1,5a.
Периметр треугольника – это сумма всех его сторон:
AB + BC + AC = a + a + 1,5a = 3,5a = 14.
Т.е. a = 4.

Следовательно, боковая сторона равна 4 см, а основание – 6 см (4 см ⋅1,5).

Видео:Равнобедренный треугольник. Практическая часть. 7 класс.Скачать

Равнобедренный треугольник. Практическая часть. 7 класс.

Решение задач по теме «Треугольники» (7-й класс)

Разделы: Математика

Класс: 7

Цели и задачи урока:

  • обобщить, закрепить и углубить знания по изученной теме;
  • формировать умение обучаемых доказывать равенство данных треугольников, опираясь на изученные признаки, применять свойства равнобедренного треугольника;
  • отработать навыки решения простейших задач на построение с помощью циркуля и линейки;
  • развивать логическое мышление, самостоятельность учащихся при решении заданий; умение на практике применять знания, полученные на уроках;
  • воспитывать познавательную активность, упорство в достижении поставленной цели, культуру умственного труда

Оборудование:

  • интерактивная доска или наглядный материал (готовые чертежи);
  • карточки с задачами для индивидуальной работы на доске;
  • таблицы с признаками равенства треугольников.

Тип урока: урок закрепления полученных знаний.

Ход урока

І. Организационный момент.

Учитель:

— Тема урока: «Решение задач по теме «Треугольники»». Мы сегодня обобщим и систематизируем знания по данной теме и наша цель: подготовиться к контрольной работе, которая будет на следующем уроке.

— Откройте дневники и запишите домашнее задание.

  • I уровень: № 120(б), 121;
  • II – III уровень: №160 (б), 162(б).

II. Актуализация опорных знаний.

1. У доски двое учащихся решают задачи по карточкам.

Начертите равнобедренный треугольник АВС с основанием АС. С помощью циркуля и линейки проведите медиану АА1 к боковой стороне ВС.

Дано: АО = BO, СО = DO, CO = 5см, ВО = 3см, BD = 4см.
1)Докажите, что Задачи на свойства равнобедренного треугольникаСАО = Задачи на свойства равнобедренного треугольникаDBO.
2)Найдите периметр треугольника САО.

Задачи на свойства равнобедренного треугольника

Задачи на свойства равнобедренного треугольника
2. Для остальных учащихся класса организована фронтальная работа.

Цель: повторить основные вопросы теории темы «Равнобедренный треугольник и его свойства» с помощью теста. (Вопросы теста – на интерактивной доске)

Теоретический тест. [1]
В каждом задании из трёх предложенных ответов выберите верный и обоснуйте его. Верных ответов может быть несколько. Подумайте и ответьте на вопрос. (А я считаю, что…; я не согласна с этим утверждением, т.к. …)

1) Медиана в равнобедренном треугольнике является его биссектрисой и высотой. Это утверждение:
а) всегда верно;
б) может быть верно;
в) всегда неверно.
Ответ: б), если медиана проведена к основанию равнобедренного треугольника.

2) Если треугольник равносторонний, то:
а) он равнобедренный;
б) все его углы равны;
в) любая его высота является биссектрисой и медианой.
Ответ: а), б), и в), равносторонний треугольник является частным случаем равнобедренного треугольника; в равнобедренном треугольнике углы при основании равны, поэтому в равностороннем треугольнике все углы равны.

3) В каком треугольнике только одна его высота делит треугольник на два равных треугольника?
а) в любом;
б) в равнобедренном;
в) в равностороннем.
Ответ: б), высота, проведённая к основанию равнобедренного треугольника.

4) Биссектриса в равностороннем треугольнике является медианой и высотой. Это утверждение:
а) всегда верно;
б) может быть верно;
в) всегда неверно.
Ответ: а)

5) Если треугольник равнобедренный, то
а) он равносторонний;
б) любая его медиана является биссектрисой и высотой;
в) ответы а) и б) неверны.
Ответ: в), т.к. равнобедренный треугольник не всегда является равносторонним; медиана, проведённая к боковой стороне равнобедренного треугольника, не является биссектрисой и высотой, если треугольник не равносторонний.

6) В каком треугольнике любая его высота делит треугольник на два равных треугольника?
а) в любом;
б) в равнобедренном;
в) в равностороннем.
Ответ: в).

Учитель:
— Мы с вами повторили материал темы «Равнобедренный треугольник и его свойства», а теперь повторим признаки равенства треугольников. (Обратить внимание обучающихся на таблицы с признаками равенства треугольников)

3. Задачи в рисунках (на интерактивной доске).

Учитель:
— Определите, являются ли равными треугольники на рисунках.

— Сколько пар равных элементов должно быть в равных треугольниках?

🎥 Видео

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)

Равнобедренный треугольник. 7 класс.Скачать

Равнобедренный треугольник. 7 класс.

ГЕОМЕТРИЯ 7 класс : Решение задач по теме "Равнобедренный треугольник"Скачать

ГЕОМЕТРИЯ 7 класс : Решение задач по теме "Равнобедренный треугольник"

Решение задач ( Равнобедренный треугольник) 7 классСкачать

Решение задач ( Равнобедренный треугольник) 7 класс

18. Свойства равнобедренного треугольникаСкачать

18. Свойства равнобедренного треугольника

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Периметр равнобедренного треугольникаСкачать

Периметр равнобедренного треугольника

Свойства равнобедренного треугольника #огэ #математика #shortsСкачать

Свойства равнобедренного треугольника #огэ #математика #shorts

МЕРЗЛЯК-7 ГЕОМЕТРИЯ РАВНОБЕДРЕННЫЙ ТРЕУГОЛЬНИК И ЕГО СВОЙСТВА ПАРАГРАФ-9Скачать

МЕРЗЛЯК-7 ГЕОМЕТРИЯ РАВНОБЕДРЕННЫЙ ТРЕУГОЛЬНИК И ЕГО СВОЙСТВА ПАРАГРАФ-9

свойства равнобедренного треугольника. Задача. Найти стороны треугольника.Скачать

свойства равнобедренного треугольника. Задача. Найти стороны треугольника.

Учимся решать задачи по геометрии. Равнобедренный треугольникСкачать

Учимся решать задачи по геометрии. Равнобедренный треугольник

Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.Скачать

Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.

Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)Скачать

Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Геометрия 7 класс (Урок№32 - Повторение. Равнобедренный треугольник и его свойства.)Скачать

Геометрия 7 класс (Урок№32 - Повторение. Равнобедренный треугольник и его свойства.)
Поделиться или сохранить к себе: