Высота трапеции равна двум радиусам вписанной окружности

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Высота трапеции равна двум радиусам вписанной окружности

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

Высота трапеции равна двум радиусам вписанной окружности

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

Высота трапеции равна двум радиусам вписанной окружности

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

Высота трапеции равна двум радиусам вписанной окружности

Видео:Радиус описанной окружности трапецииСкачать

Радиус описанной окружности трапеции

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Высота трапеции равна двум радиусам вписанной окружности

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

Высота трапеции равна двум радиусам вписанной окружности

3. Треугольники Высота трапеции равна двум радиусам вписанной окружностии Высота трапеции равна двум радиусам вписанной окружности, образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия – Высота трапеции равна двум радиусам вписанной окружности

Отношение площадей этих треугольников есть Высота трапеции равна двум радиусам вписанной окружности.

Высота трапеции равна двум радиусам вписанной окружности

4. Треугольники Высота трапеции равна двум радиусам вписанной окружностии Высота трапеции равна двум радиусам вписанной окружности, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

Высота трапеции равна двум радиусам вписанной окружности

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

Высота трапеции равна двум радиусам вписанной окружности

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

Высота трапеции равна двум радиусам вписанной окружности

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

Высота трапеции равна двум радиусам вписанной окружности

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Высота трапеции равна двум радиусам вписанной окружности

Видео:Задача 6 №27926 ЕГЭ по математике. Урок 141Скачать

Задача 6 №27926 ЕГЭ по математике. Урок 141

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

Высота трапеции равна двум радиусам вписанной окружности

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

Высота трапеции равна двум радиусам вписанной окружности

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Высота трапеции равна двум радиусам вписанной окружности

Видео:Задание 26_Равнобедренная трапеция. Вписанная окружность.Скачать

Задание 26_Равнобедренная трапеция. Вписанная окружность.

Вписанная окружность

Если в трапецию вписана окружность с радиусом Высота трапеции равна двум радиусам вписанной окружностии она делит боковую сторону точкой касания на два отрезка — Высота трапеции равна двум радиусам вписанной окружностии Высота трапеции равна двум радиусам вписанной окружности, то Высота трапеции равна двум радиусам вписанной окружности

Высота трапеции равна двум радиусам вписанной окружности

Видео:Трапеция и вписанная окружностьСкачать

Трапеция и вписанная окружность

Площадь

Высота трапеции равна двум радиусам вписанной окружностиили Высота трапеции равна двум радиусам вписанной окружностигде Высота трапеции равна двум радиусам вписанной окружности– средняя линия

Высота трапеции равна двум радиусам вписанной окружности

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:Задача.Высота трапеции, образованной касательными к двум окружностям.Скачать

Задача.Высота трапеции, образованной касательными к двум окружностям.

Высота трапеции равна двум радиусам вписанной окружности

Напомним свойства трапеции, которые часто используются при решении задач. Некоторые из этих свойств были доказаны в заданиях для 9-го класса, другие попробуйте доказать самостоятельно. Приведённые рисунки напоминают ход доказательства.

$$ 4.^$$. Диагонали трапеции разбивают её на четыре треугольника с общей вершиной (рис. 20). Площади треугольников, прилежащих к боковым сторонам, равны, а треугольники прилежащие к основаниям — подобны.

$$ 4.^$$. В любой трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжении боковых сторон, лежат на одной прямой (на рис. 21 точки `M`, `N`, `O` и `K`).

Высота трапеции равна двум радиусам вписанной окружности

$$ 4.^$$. В равнобокой трапеции углы при основании равны (рис. 22).

$$ 4.^$$. В равнобокой трапеции прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции (рис. 23).

$$ 4.^$$. В равнобокой трапеции диагонали равны (рис. 24).

$$ 4.^$$. В равнобокой трапеции высота, опущенная на большее основание из конца меньшего основания, делит его на два отрезка, один из которых равен полуразности оснований, а другой – их полусумме

(рис. 25, основания равны `a` и `b`, `a>b`).

Высота трапеции равна двум радиусам вписанной окружности

$$ 4.^$$. Во всякой трапеции середины боковых сторон и середины диагоналей лежат на одной прямой (рис. 26).

$$ 4.^$$. Во всякой трапеции отрезок, соединяющий середины диагоналей, параллелен основаниям и равен полуразности оснований (рис. 27).

Высота трапеции равна двум радиусам вписанной окружности

$$ 4.^$$.В равнобокой трапеции `d^2=c^2+ab`, где `d` — диагональ, `c` — боковая сторона, `a` и `b` основания.

Во всякой трапеции сумма квадратов диагоналей равна сумме квадратов боковых сторон и удвоенного произведения оснований, т. е. `d_1^2+d_2^2=c_1^2+c_2^2+2*ab`.

$$ 4.^$$. Во всякой трапеции с основаниями `a` и `b` отрезок с концами на боковых сторонах, проходящий через точку пересечения диагоналей параллельно основаниям, равен `(2ab)/(a+b)` (на рис. 28 отрезок `MN`).

$$ 4.^$$. Трапецию можно вписать в окружность тогда и только тогда, когда она равнобокая.

Докажем, например, утверждение $$ 4.^$$ .

Применяем теорему косинусов (см. рис. 29а и б):

`ul(DeltaACD):` `d_1^2=a^2+c_2^2-2a*c_2*cos varphi`,

`ul(DeltaBCD):` `d_2^2=b^2+c_2^2+2b*c_2*cos varphi` (т. к. `cos(180^@-varphi)=-cos varphi`).

Проводим `CK«||«BA` (рис. 29в), рассматриваем треугольник `ul(KCD):` `c_1^2=c_2^2+(a-b)^2-2c_2*(a-b)*cos varphi`. Используя последнее равенство, заменяем выражение в скобках в (2), получаем:

`d_1^2+d_2^2=c_1^2+c_2^2+2ab`.

В случае равнобокой трапеции `d_1=d_2`, `c_1=c_2=c`, поэтому получаем

`d^2=c^2+ab`.

Высота трапеции равна двум радиусам вписанной окружности

Отрезок, соединяющий середины оснований трапеции, равен `5`, одна из диагоналей равна `6`. Найти площадь трапеции, если её диагонали перпендикулярны.

`AC=6`, `BM=MC`, `AN=ND`, `MN=5` (рис. 30а). Во всякой трапеции середины оснований и точка пересечения диагоналей лежат на од-ной прямой (свойство $$ 4.^$$). Треугольник `BOC` прямоугольный (по условию `AC_|_BD`), `OM` — его медиана, проведённая из вершины прямого угла, она равна половине гипотенузы: `OM=1/2BC`. Аналогично устанавливается `ON=1/2AD`, поэтому `MN=1/2(BC+AD)`. Через точку `D` проведём прямую, параллельную диагонали `AC`, пусть `K` — её точка пересечения с прямой `BC` (рис. 30б).

Высота трапеции равна двум радиусам вписанной окружности

По построению `ACKD` — параллелограмм, `DK=AC`, `CK=AD` и `/_BDK=90^@`

(т. к. угол `BDK` — это угол между диагоналями трапеции).

Прямоугольный треугольник `ul(BDK)` с гипотенузой `BK=BC+AD=2MN=10` и катетом `DK=6` имеет площадь `S=1/2DK*BD=1/2DKsqrt(BK^2-DK^2)=24`. Но площадь треугольника `BDK` равна площади трапеции, т. к. если `DP_|_BK`, то

Диагонали трапеции, пересекаясь, разбивают её на четыре треугольника с общей вершиной. Найти площадь трапеции, если площади треугольников, прилежащих к основаниям, равны `S_1` и `S_2`.

Пусть `BC=a`, `AD=b`, и пусть `h` — высота трапеции (рис. 31). По свойству $$ 4.^$$ `S_(ABO)=S_(CDO)`, обозначим эту площадь `S_0` (действительно, `S_(ABD)=S_(ACD)`, т. к. у них общие основания и равные высоты, т. е. `S_(AOB)+S_(AOD)=S_(COD)+S_(AOD)`, откуда следует `S_(AOB)=S_(COD)`). Так как `S_(ABC)=S_0 + S_1=1/2ah` и `S_(ACD)=S_0+S_2=1/2bh`, то `(S_0+S_1)/(S_0 + S_2)=a/b`.

Далее, треугольники `BOC` и `DOA` подобны, площади подобных треугольников относятся как квадраты соответствующих сторон, значит, `(S_1)/(S_2)=(a/b)^2`. Таким образом, `(S_0+S_1)/(S_0+S_2)=sqrt((S_1)/(S_2))`.Отсюда находим `S_0=sqrt(S_1S_2)`, и поэтому площадь трапеции будет равна

Высота трапеции равна двум радиусам вписанной окружности

Основания равнобокой трапеции равны `8` и `10`, высота трапеции равна `3` (рис. 32).

Высота трапеции равна двум радиусам вписанной окружности

Найти радиус окружности, описанной около этой трапеции.

Трапеция равнобокая, по свойству $$ 4.^$$ около этой трапеции можно описать окружность. Пусть `BK_|_AD`, по свойству $$ 4.^$$

Из прямоугольного треугольника `ABK` находим `AB=sqrt(1+9)=sqrt(10)` и `sinA=(BK)/(AB)=3/(sqrt10)`. Окружность, описанная около трапеции `ABCD`, описана и около треугольника `ABD`, значит (формула (1), § 1), `R=(BD)/(2sinA)`. Отрезок `BD` находим из прямоугольного треугольника `KDB:` `BD=sqrt(BK^2+KD^2)=3sqrt(10)` (или по формуле `d^2=c^2+ab`), тогда

$$ 4.^$$. Площадь трапеции равна площади треугольника, две стороны которого равны диагоналям трапеции, а третья равна сумме оснований.

$$ 4.^$$. Если `S_1` и `S_2` — площади треугольников, прилежащих к основаниям, то площади треугольников, прилежащих к боковым сторонам равны `sqrt(S_1S_2)`, а площадь всей трапеции равна `(sqrt(S_1) +sqrt(S_2))^2`.

$$ 4.^$$. Радиус окружности, описанной около трапеции, находится по формуле `R+a/(2sin alpha)`, где `a` — какая-то сторона (или диагональ трапеции), `alpha` — смотрящий на неё вписанный угол.

Видео:Основания равнобедренной трапеции равны 72 и 30. Центр окружности, описанной около трапеции... (ЕГЭ)Скачать

Основания равнобедренной трапеции равны 72 и 30. Центр окружности, описанной около трапеции... (ЕГЭ)

Трапеция.

Высота трапеции равна двум радиусам вписанной окружности

Трапеция — четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны. Параллельные стороны трапеции называются её основаниями, а две другие — боковыми сторонами.

Трапеция называется равнобедренной, если её боковые стороны равны.

Трапеция называется прямоугольной, если у нее два угла прямые.

Основные свойства трапеции:

  1. Сумма углов при каждой боковой стороне трапеции равна 180°.
  2. Средняя линия трапеция параллельна её основаниям и равна их полусумме.
  3. В любой трапеции следующие точки лежат на одной прямой: точка пересечения продолжений боковых сторон, середины оснований и точка пересечения диагоналей.
  4. Треугольники, образованные отрезками диагоналей и основаниями трапеции, подобны.
  5. Треугольники, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.
  6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.
  7. Если сумма углов, при любом основании трапеции, равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.
  8. Биссектриса любого угла трапеции отсекает от нее равнобедренный треугольник.
  9. Биссектрисы углов, при боковой стороне трапеции, перпендикулярны.
  10. Если в трапеции диагонали перпендикулярны, то высота равна полусумме оснований.
  11. Отрезок, заключенный между боковых сторон трапеции, параллельный основаниям трапеции и проходящий через точку пересечения ее диагоналей — среднее гармоническое оснований трапеции.

Свойства равнобедренной трапеции:

  1. Диагонали равны.
  2. Углы при основании равны.
  3. Сумма противоположных углов равна 180°.
  4. Около равнобедренной трапеции можно описать окружность.
  5. Высота, опущенная из вершины тупого угла равнобедренной трапеции, делит большее основание трапеции на два отрезка, больший из которых равен полусумме оснований, а меньший — полуразности оснований.

Описанная трапеция:

  1. Если вокруг трапеции можно описать окружность, то трапеция равнобедренная.
  2. Радиус вписанной окружности равен среднему геометрическому длин отрезков, на которые радиус вписанной окружности делит боковую сторону, точкой касания.
  3. Радиус вписанной окружности равен половине высоты трапеции.

Вписанная трапеция:

  1. Трапецию можно вписать в окружность,если сумма длин оснований равна сумме длин боковых сторон.

Площадь трапеции:

  1. Формула площади трапеции через основания и высоту: S=0,5·(a+b)·h.
  2. Формула площади трапеции через диагонали и угол между ними: S=0,5·d1·d2·sinφ.

💡 Видео

Задача про трапецию, описанную около окружностиСкачать

Задача про трапецию, описанную около окружности

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 классСкачать

ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 класс

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

ВЫСОТЫ ТРАПЕЦИИ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ВЫСОТЫ ТРАПЕЦИИ 😉 #егэ #математика #профильныйегэ #shorts #огэ

Геометрия Задача № 26 Найти радиус вписанной в трапецию окружностиСкачать

Геометрия Задача № 26  Найти радиус вписанной в трапецию окружности

Планиметрия 27 | mathus.ru | окружность, касающаяся основания трапеции и вписанной в нее окружностиСкачать

Планиметрия 27 | mathus.ru | окружность, касающаяся основания трапеции и вписанной в нее окружности

8 класс, 6 урок, ТрапецияСкачать

8 класс, 6 урок, Трапеция

Трапеция. Практическая часть - решение задачи. 8 класс.Скачать

Трапеция. Практическая часть - решение задачи. 8 класс.

Формулы для радиуса окружности #shortsСкачать

Формулы для радиуса окружности #shorts

Геометрия Основания равнобокой трапеции равны 9 см и 21 см а высота 8 см Найти радиус окружностиСкачать

Геометрия Основания равнобокой трапеции равны 9 см и 21 см а высота 8 см Найти радиус окружности

КАК найти площадь трапеции? Геометрия 8 класс | МатематикаСкачать

КАК найти площадь трапеции? Геометрия 8 класс | Математика

В равнобедренной трапеции диагонали перпендикулярны. Высота трапеции равна 12.Скачать

В равнобедренной трапеции диагонали перпендикулярны. Высота трапеции равна 12.
Поделиться или сохранить к себе: